Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 9, Number 2, 2014
Epidemics models on networks
|
|
---|---|---|
Page(s) | 43 - 57 | |
DOI | https://doi.org/10.1051/mmnp/20149203 | |
Published online | 24 April 2014 |
- A. Bátkai, I.Z. Kiss, E. Sikolya, P.L. Simon. Differential equation approximations of stochastic network processes: an operator semigroup approach. Networks and Heterogeneous Media, 7 (2012), 43–58. [CrossRef] [MathSciNet] [Google Scholar]
- B. Bollobás. Random graphs. Cambridge University Press, Cambridge, (2001). [Google Scholar]
- L. Decreusefond, J.-S. Dhersin, P. Moyal, V. C. Tran. Large graph limit for an SIR process in random network with heterogeneous connectivity. Ann. Appl. Probab., 22 (2012), 541–575. [CrossRef] [Google Scholar]
- K.T.D. Eames, M.J. Keeling. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. PNAS, 99 (2002), 13330-13335. [Google Scholar]
- D. M. Green, I. Z. Kiss. Large-scale properties of clustered networks: Implications for disease dynamics. Journal of Biological Dynamics, 4 (2010), 431-445. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- T. House, M.J. Keeling. The impact of contact tracing in clustered populations. PLoS Comput. Biol., 6 (2010), e1000721. [CrossRef] [PubMed] [Google Scholar]
- T. House, M. J. Keeling. Insights from unifying modern approximations to infections on networks. J. Roy. Soc. Interface, 8 (2011), 67-73. [Google Scholar]
- M.J. Keeling. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. B, 266 (1999), 859-867. [CrossRef] [Google Scholar]
- M.J. Keeling, K.T.D. Eames. Networks and epidemic models. J. Roy. Soc. Interface, 2 (2005), 295-307. [Google Scholar]
- J. Lindquist, J. Ma, P. van den Driessche, F.H. Willeboordse. Effective degree network disease models. J. Math. Biol., 62 (2011), 143-164. [Google Scholar]
- V. Marceau, P.-A. Noël, L. Hébert-Dufresne, A. Allard, L. J. Dubé. Adaptive networks: coevolution of disease and topology. Phys. Rev. E., 82 (2010), 036116. [CrossRef] [MathSciNet] [Google Scholar]
- J. C. Miller, A. C. Slim, E. M. Volz. Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface, 9 (70) (2012), 890–906. [CrossRef] [PubMed] [Google Scholar]
- M. Roy, M. Pascual. On representing network heterogeneities in the incidence rate of simple epidemic models. Ecol. Complexity, 3 (2006), 80-90. [CrossRef] [Google Scholar]
- P. L. Simon, I. Z. Kiss. From exact stochastic to mean-field ODE models: a new approach to prove convergence results. IMA J. Appl. Math., 78 (5) (2013), 945-964. [CrossRef] [MathSciNet] [Google Scholar]
- P.L. Simon, M. Taylor, I.Z. Kiss. Exact epidemic models on graphs using graph-automorphism driven lumping. J. Math. Biol., 62 (2012), 479-508. [CrossRef] [Google Scholar]
- M. Taylor, P. L. Simon, D. M. Green, T. House, I. Z. Kiss. From Markovian to pairwise epidemic models and the performance of moment closure approximations. J. Math. Biol., 64 (2012), 1021-1042. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.