Free Access
Editorial
Issue |
Math. Model. Nat. Phenom.
Volume 9, Number 3, 2014
Biological evolution
|
|
---|---|---|
Page(s) | 1 - 4 | |
DOI | https://doi.org/10.1051/mmnp/20149301 | |
Published online | 28 May 2014 |
- N. Bessonov, N. Reinberg, V. Volpert. Mathematics of Darwin’s diagram. Math. Mod. Nat. Phen., (2009), 5–25. [Google Scholar]
- A. S. Bratus, V.P. Posvyanskii, A. S. Novozhilov. Replicator equations and space. Math. Mod. Nat. Phen., (2014), 47–67. [Google Scholar]
- M. Broom, J. Rychtár˘, D. Sykes. Kleptoparasitic interactions under asymmetric resource valuation. Math. Mod. Nat. Phen., (2014), 138–147. [Google Scholar]
- C. Darwin. The origin of species by means of natural selection. Barnes and Noble Books, New York, 2004. Publication prepared on the basis of the first edition appeared in 1859. [Google Scholar]
- M. Eigen, J. McCascill, P. Schuster. The Molecular Quasi-Species. Adv. Chem. Phys., 75 (1989), 149–263. [Google Scholar]
- J. Z. Farkas, A. Yu. Morozov. Modelling effects of rapid evolution on persistence and stability in structured predator-prey systems. Math. Mod. Nat. Phen., (2014), 26–46. [Google Scholar]
- J. Hofbauer, K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press, 1998. [Google Scholar]
- H. Kokko, K. U. Heubel. Prudent males, group adaptation, and the tragedy of the commons. Oikos, 120 (2011), 641-656. [CrossRef] [Google Scholar]
- K. Parvinen. Metapopulation dynamics and the evolution of sperm parasitism. Math. Mod. Nat. Phen., (2014), 124–137. [Google Scholar]
- E.V. Iyengar. Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biol. J. Linn. Soc., 93 (2008), 745–762. [CrossRef] [Google Scholar]
- S.E. Kingsland. Modeling nature: Episodes in the history of population ecology. 2d ed. Chicago: Univ. of Chicago Press, 1995. [Google Scholar]
- G. P. Karev, I. G. Kareva. Replicator equations and models of biological populations and communities. Math. Mod. Nat. Phen., (2014), 68–95. [Google Scholar]
- A. Loewer, E. Batchelor, G. Gaglia, G. Lahav. Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell, 142 (2010), 89–100. [CrossRef] [PubMed] [Google Scholar]
- A. Yu. Morozov. Modelling biological evolution: recent progress, current challenges and future direction. Interface Focus, 3 (2013), 20130054. [CrossRef] [Google Scholar]
- A. Yu. Morozov, A. F. Pasternak, E. G. Arashkevich. Revisiting the Role of Individual Variability in Population Persistence and Stability. PLoS ONE 8(8)(2013), e70576 [CrossRef] [PubMed] [Google Scholar]
- R. Retkute. Toward a general model for the evolution of DNA replication in three domains of life. Math. Mod. Nat. Phen., (2014), 96–106. [Google Scholar]
- J. Teichmann, M. Broom, E. Alonso. The evolutionary dynamics of aposematism: a numerical analysis of co-evolution in finite populations. Math. Mod. Nat. Phen., (2014), 148–164. [Google Scholar]
- A. Terry. Oscillations and DNA repair in a spatio-temporal model of the p53 signalling pathway. Math. Mod. Nat. Phen., (2014), 107–123. [Google Scholar]
- R. Weinberg. The Biology of Cancer. Garland Science: Taylor and Francis Group, 2007. [Google Scholar]
- T. Yoshida, L.E. Jones, S.P. Ellner, G.F. Fussmann, J. Hairston. Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424, (2003) 303–306. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.