Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 3, 2014
Biological evolution
Page(s) 5 - 25
Published online 28 May 2014
  1. N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. DCDS B, 13 (2010), no. 3, 537-557. [CrossRef] [Google Scholar]
  2. N. Apreutesei, A. Ducrot, V. Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete Contin. Dyn. Syst., Ser. B, 11 (2009), no. 3, 541–561. [Google Scholar]
  3. N. Apreutesei, A. Ducrot, V. Volpert. Competition of species with intra-specific competition. Math. Model. Nat. Phenom., 3 (2008), 1–27. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  4. S. Atamas. Self-organization in computer simulated selective systems. Biosystems, 39 (1996), 143-151. [CrossRef] [PubMed] [Google Scholar]
  5. H. Berestycki, G. Nadin, B. Perthame, L. Ryzhik. The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity, 22 (2009), no. 12, 2813–2844. [CrossRef] [Google Scholar]
  6. N.F. Britton. Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math., 6 (1990), 1663–1688. [CrossRef] [Google Scholar]
  7. J.A. Coyne, H.A. Orr. Speciation. Sinauer Associates, Sunderland, 2004. [Google Scholar]
  8. C. Darwin. The origin of species by means of natural selection. Barnes & Noble Books, New York, 2004. Publication prepared on the basis of the first edition appeared in 1859. [Google Scholar]
  9. I. Demin, V. Volpert. Existence of waves for a nonlocal reaction-diffusion equation. Math. Model. Nat. Phenom., 5 (2010), no. 5, 80–101. [CrossRef] [EDP Sciences] [Google Scholar]
  10. L. Desvillettes, P.E. Jabin, S. Mischler, G. Raoul. On selection dynamics for continuous structured populations. Commun. Math. Sci., 6 (2008), no. 3, 729–747. [CrossRef] [Google Scholar]
  11. U. Dieckmann, M. Doebeli. On the origin of species by sympatric speciation. Nature, 400 (1999), 354–357. [CrossRef] [PubMed] [Google Scholar]
  12. M. Doebeli, U. Dieckmann. Evolutionary branching and sympatric speciation caused by different types of ecological interactions. The American Naturalist, 156 (2000), S77–S101. [CrossRef] [PubMed] [Google Scholar]
  13. A. Ducrot, M. Marion, V. Volpert. Spectrum of some integro-differential operators and stability of travelling waves. Nonlinear Analysis Series A: Theory, Methods and Applications, 74 (2011), no. 13, 4455-4473. [CrossRef] [Google Scholar]
  14. R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7 (1937), 355–369. [Google Scholar]
  15. S. Gavrilets. Fitness Landscape and the Origin of Species. Princeton University Press, Princeton, 2004. [Google Scholar]
  16. S. Genieys, N. Bessonov, V. Volpert. Mathematical model of evolutionary branching. Mathematical and computer modelling, 2008, doi: 10/1016/j.mcm.2008.07.023 [Google Scholar]
  17. S. Genieys, V. Volpert, P. Auger. Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Math. Model. Nat. Phenom., 1 (2006), no. 1, 65–82. [Google Scholar]
  18. S. Genieys, V. Volpert, P. Auger. Adaptive dynamics: modelling Darwin’s divergence principle. Comptes Rendus Biologies, 329 (2006) no. 11, 876–879. [Google Scholar]
  19. S.A. Gourley. Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol., 41 (2000), 272–284. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. S.A. Gourley, M.A.J. Chaplain, F.A. Davidson. Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dynamical systems, 16 (2001), no. 2, 173–192. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. Iron, M.J. Ward. A metastable spike solution for a nonlocal reaction-diffusion model. SIAM J. Appl. Math., 60 (2000), no. 3, 778–802. [CrossRef] [Google Scholar]
  22. A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. Bull. Moscow Univ., Math. Mech., 1:6 (1937), 1-26. In: Selected Works of A.N. Kolmogorov, Vol. 1, V.M. Tikhomirov, Editor, Kluwer, London, 1991. [Google Scholar]
  23. A. Lotka. Elements of Physical Biology. Williams & Wilkins, Baltimore, 1925. [Google Scholar]
  24. T.R. Malthus. Essay on the Principle of Population. Printed for J. Johnson, in St. Paul’s Church-Yard, 1798. [Google Scholar]
  25. J. Murray. Mathematical Biology. Second edition, 1993; Third edition, Volumes I and II, 2003. Springer, Heidelberg. [Google Scholar]
  26. G. Nadin, L. Rossi, L. Ryzhik, B. Perthame. Wave-like solutions for nonlocal reaction-diffusion equations: a toy model. Math. Model. Nat.Phenom., 8 (2013), no. 3, 33–41. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  27. Y. Nec, M. J. Ward. The stability and slow dynamics of two-spike patterns for a class of reaction-diffusion system. Math. Model. Nat. Phenom., 8 (2013), no.5. [Google Scholar]
  28. B. Perthame, S. Genieys. Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit. Math. Model. Nat. Phenom., 4 (2007), 135–151. [Google Scholar]
  29. A. Scheel. Radially symmetric patterns of reaction-diffusion systems. Memoirs of the AMS, 165 (2003), no. 3., 86 p. [Google Scholar]
  30. J.C. Tzou, A. Bayliss, B.J. Matkowsky, V.A. Volpert. Stationary and slowly moving localised pulses in a singularly perturbed Brusselator model. Euro. Jnl. of Applied Mathematics, 22 (2011), 423–453. [CrossRef] [Google Scholar]
  31. P.-F. Verhulst. Notice sur la loi que la population suit dans son accroissement. Correspondance mathématique et physique. 10 (1838), 113–121. [Google Scholar]
  32. A.I. Volpert, V. Volpert, V.A. Volpert. Traveling Wave Solutions of Parabolic Systems. Translation of Mathematical Monographs, Vol. 140, AMS, Providence, 1994. [Google Scholar]
  33. V. Volpert. Elliptic Partial Differential Equations. Volume 1. Fredholm Theory of Elliptic Problems in Unbounded Domains. Birkhäuser, 2011. [Google Scholar]
  34. V. Volpert. Elliptic Partial Differential Equations. Volume 2. Reaction-diffusion Equations. Birkhäuser, 2014. [Google Scholar]
  35. V. Volpert, S. Petrovskii. Reaction-diffusion waves in biology. Physics of Life Reviews, 6 (2009), 267—310. [Google Scholar]
  36. V. Volpert, V. Vougalter. Emergence and propagation of patterns in nonlocal reaction-diffusion equations arising in the theory of speciation. In: Dispersal, individual movement and spatial ecology. M. Lewis, Ph. Maini, S. Petrovskii. Editors. Springer Applied Interdisciplinary Mathematics Series. Lecture Notes in Mathematics, Volume 2071, 2013, 331-353. [Google Scholar]
  37. V. Volterra. Leçons sur la théorie mathématique de la lutte pour la vie. Paris, 1931. [Google Scholar]
  38. J. Wei, M. Winter. Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in R1. Methods Appl. Anal., 14 (2007), no. 2, 119–163. [CrossRef] [MathSciNet] [Google Scholar]
  39. F. Zhang. Coexistence of a pulse and multiple spikes and transition layers in the standing waves of a reaction-diffusion system. J. Differential Equations, 205 (2004), 77–155. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.