Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 3, 2014
Biological evolution
Page(s) 26 - 46
DOI https://doi.org/10.1051/mmnp/20149303
Published online 28 May 2014
  1. P.A. Abrams, C.J. Walters. Invulnerable prey and the paradox of enrichment. Ecology, 77 (1996), 1125–1133. [CrossRef] [Google Scholar]
  2. A. S. Ackleh, J. Z. Farkas. On the net reproduction rate of continuous structured populations with distributed states at birth. Comput. Math. Appl., 66 (2013), 1685–1694. [CrossRef] [Google Scholar]
  3. L. J. S. Allen. An introduction to mathematical biology. Pearson Prentice Hall, Upper Saddle River, NJ, 2007. [Google Scholar]
  4. G. Barles, B. Perthame. Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics. Contemp. Math., 439 (2007), 57–68. [Google Scholar]
  5. E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul, R. Vouituriez. Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration. C. R. Math. Acad. Sci. Paris, 350 (2012), 761–766. [CrossRef] [MathSciNet] [Google Scholar]
  6. À. Calsina, J. Z. Farkas. Positive steady states of evolution equations with finite dimensional nonlinearities. to appear in SIAM J. Math. Anal. [Google Scholar]
  7. À. Calsina, J. Z. Farkas. Steady states in a structured epidemic model with Wentzell boundary condition. J. Evol. Equ., 12 (2012), 495–512. [CrossRef] [MathSciNet] [Google Scholar]
  8. À. Calsina, J. M. Palmada. Steady states of a selection-mutation model for an age structured population. J. Math. Anal. Appl., 400 (2013), 386–395. [CrossRef] [Google Scholar]
  9. J.M. Cushing. An introduction to structured population dynamics. SIAM, Philadelphia, PA, 1998. [Google Scholar]
  10. O. Diekmann, P.-E. Jabin, S. Mischler, B. Perthame. The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. Th. Pop. Biol., 67 (2005), 257–271. [Google Scholar]
  11. D. Dube, K. Kim, A. P. Alker, C.D. Harvell. Size structure and geographic variation in chemical resistance of sea fan corals Gorgonia ventalina to a fungal pathogen. Mar. Ecol. Prog. Ser., 231 (2002), 139–150. [CrossRef] [Google Scholar]
  12. M. A. Duffy, L. Sivars-Becker. Rapid evolution and ecological host-parasite dynamics. Ecol. Lett., 10 (2007), 44–53. [CrossRef] [PubMed] [Google Scholar]
  13. S. P. Ellner, M. A. Geber, N. G. Hairston. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol. Lett., 14 (2011), 603–614. [CrossRef] [PubMed] [Google Scholar]
  14. J. Z. Farkas, D. M. Green, P. Hinow. Semigroup analysis of structured parasite populations. Math. Model. Nat. Phenom., 5 (2010), 94–114. [Google Scholar]
  15. J. Z. Farkas, T. Hagen. Linear stability and positivity results for a generalized size-structured Daphnia model with inflow. Appl. Anal., 86 (2007), 1087–1103. [CrossRef] [Google Scholar]
  16. G. F. Fussmann, A. Gonzalez. Evolutionary rescue can maintain an oscillating community undergoing environmental change. Interface Focus, 3 (2013), 20130036. [CrossRef] [PubMed] [Google Scholar]
  17. W. Gentleman, A. Leising, B. Frost, S. Storm, J. Murray. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep-Sea Res. II Top Stud., Oceanog., 50 (2003), 2847–2875. [Google Scholar]
  18. K. P. Hadeler. Structured populations with diffusion in state space. Math. Biosci. Eng., 7 (2010), 37–49. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. J. N. G., Hairston, L. De Meester. Daphnia paleogenetics and environmental change: deconstructing the evolution of plasticity. Int. Rev. Hydrobiol., 93 (2008), 578–592. [CrossRef] [Google Scholar]
  20. M. T. J. Johnson, M. Vellend, J. R. Stinchcombe. Evolution in plant populations as a driver of ecological changes in arthropod communities. Phil. Trans. R. Soc. B., 364 (2009), 1593–1605. [CrossRef] [Google Scholar]
  21. L.E. Jones, S.P. Ellner. Effects of rapid prey evolution on predator-prey cycles. J. Math. Biol., 55 (2007), 541–573. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. L. E. Jones, L. Becks, S. P. Ellner, N. G. Hairston Jr., T. Yoshida, G. F. Fussmann. Rapid contemporary evolution and clonal food web dynamics. Phil. Trans. R. Soc. B, 364 (2009), 1579–1591 [CrossRef] [Google Scholar]
  23. D. Henry. Geometric theory of semilinear parabolic equations. Springer, Berlin-New York, 1981. [Google Scholar]
  24. C. S. Holling. The components of predation as revealed by a study of small mammal predation on the European pine sawfly. Can. Entomol., 91 (1959), 293–320. [CrossRef] [Google Scholar]
  25. T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg, 1995. [Google Scholar]
  26. A. Lorz, S. Mirrahimi, B. Perthame. Dirac mass dynamics in multidimensional nonlocal parabolic equations. Comm. Partial Differential Equations, 36 (2011), 1071-1098. [Google Scholar]
  27. M. Kot. Elements of Mathematical Ecology, Cambridge University Press, 2001. [Google Scholar]
  28. M. A. Krasnoselskii. Positive solutions of operator equations. P. Noordhoff Ltd., Groningen, 1964. [Google Scholar]
  29. I. Marek. Frobenius theory for positive operators: : Comparison theorems and applications. SIAM J. Appl. Math., 19 (1970), 607-628. [CrossRef] [Google Scholar]
  30. B. Matthews B, et al. Toward an integration of evolutionary biology and ecosystem science. Ecol. Lett., 14 (2011), 690–701. [CrossRef] [PubMed] [Google Scholar]
  31. P. Michel, T. M. Touaoula. Asymptotic behavior for a class of the renewal nonlinear equation with diffusion. Math. Methods Appl. Sci., 36 (2013), 323–335. [CrossRef] [Google Scholar]
  32. A. Yu. Morozov. Incorporating complex foraging of zooplankton in models: role of micro and mesoscale processes in macroscale patterns. In Dispersal, individual movement and spatial ecology: a mathematical perspective (eds M Lewis, P Maini & S Petrovskii). New York, NY: Springer, (2011), 1–10. [Google Scholar]
  33. A. Yu. Morozov, E.G. Arashkevich, A. Nikishina, K Solovyev. Nutrient-rich plankton communities stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity. Math. Med. Biol., 28 (2011), 185–215 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  34. A. Yu. Morozov, A. F. Pasternak, E. G. Arashkevich. Revisiting the Role of Individual Variability in Population Persistence and Stability. PLoS ONE 8 (8) (2013), e70576 [CrossRef] [PubMed] [Google Scholar]
  35. A. Oaten, W.W. Murdoch. Functional response and stability in predator-prey systems. Amer. Nat., 109 (1975), 289–298. [CrossRef] [Google Scholar]
  36. L. Perko. Differential Equations and Dynamical Systems. Springer, New York, 2001 [Google Scholar]
  37. S. V. Petrovskii, A. Y. Morozov. Dispersal in a statistically structured population: Fat tails revisited. Amer. Nat., 173 (2010), 278–289 [Google Scholar]
  38. Q. I. Rahman, G. Schmeisser. Analytic theory of polynomials. London Mathematical Society Monographs. New Series 26. Oxford: Oxford University Press, 2002. [Google Scholar]
  39. D. N. Reznick, C. K. Ghalambor, K. Crooks. Experimental studies of evolution in guppies: a model for understanding the evolutionary consequences of predator removal in natural communities. Mol. Ecol. 17 (2008), 97–107. [CrossRef] [PubMed] [Google Scholar]
  40. M. L. Rosenzweig. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171 (1971), 385–387. [CrossRef] [PubMed] [Google Scholar]
  41. M. L. Rosenzweig, R. H. MacArthur. Graphical representation and stability conditions of predator-prey interactions. Am. Nat., 97 (1963), 209–223. [CrossRef] [Google Scholar]
  42. H. H. Schäfer. Banach lattices and positive operators. Springer-Verlag, Berlin, 1974. [Google Scholar]
  43. J. N. Thompson. Rapid evolution as an ecological process. Trends Ecol. Evol., 13 (1998), 329–332. [CrossRef] [PubMed] [Google Scholar]
  44. Yu. V. Tyutyunov, O. V. Kovalev, L. I. Titova. Spatial demogenetic model for studying phenomena observed upon introduction of the ragweed leaf beetle in the South of Russia. Math. Mod. Nat. Phen., (2013). [Google Scholar]
  45. E. Venturino. An ecogenetic model. Appl. Math. Letters, 25 (2012), 1230-1233. [CrossRef] [Google Scholar]
  46. M. Wolf, F. J. Weissing. Animal personalities: consequences for ecology and evolution. Trends Ecol. Evolut., 8 (2012), 452–461. [CrossRef] [Google Scholar]
  47. T. Yoshida, L. E. Jones, S. P. Ellner, G. F. Fussmann, J. Hairston. Rapid evolution drives ecological dynamics in a predator-prey system. Nature, 424 (2003), 303–306 [CrossRef] [PubMed] [Google Scholar]
  48. K. Yosida. Functional analysis. Springer-Verlag, Berlin, 1995. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.