Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 3, 2014
Biological evolution
Page(s) 68 - 95
DOI https://doi.org/10.1051/mmnp/20149305
Published online 28 May 2014
  1. R. Alexandrova. Tumour heterogeneity. Exper. Path. & Paras., 4 (2001), 57-67. [Google Scholar]
  2. A. D. Bazykin. Nonlinear dynamics of interacting populations. World Scientific, 1998. [Google Scholar]
  3. F. Berezovskaya, G. Karev, T. W. Snell. Modeling the dynamics of natural rotifer populations: phase-parametric analysis. Ecol. Complex., 2 (2005), 395-409. [CrossRef] [Google Scholar]
  4. F. Brauer, C. Castillo-Chavez. Mathematical models in population biology and epidemiology. Springer, 2011. [Google Scholar]
  5. A. Cintron-Arias, F. Sanchez, X. Wang, C. Castillo-Chavez, D. M. Gorman, P. J. Gruenewald. The role of nonlinear relapse on contagion amongst drinking communities. In: Chowell, G., Hayman, J.M., Bettencourt, L.M.A., Castillo-Chavez, C. (Eds.), Mathematical and statistical estimation approaches in epidemiology, Springer Netherlands, (2009), 343-360. [Google Scholar]
  6. T. Dietz, E. Ostrom, P. C. Stern. The struggle to govern the commons. Science, 302 (2003), 1907–1912. [CrossRef] [PubMed] [Google Scholar]
  7. W. Feller. An introduction to probability theory and its applications. Vol. 2. John Wiley & Sons, 2008. [Google Scholar]
  8. R. Fisher. The genetical theory of natural selection: a complete variorum edition. Oxford University Press, 1999. [Google Scholar]
  9. H. Von Foerster, P. M. Mora, L. W. Amiot. Doomsday: Friday, 13 November, ad 2026. Science, 132 (1960), 1291-1295. [CrossRef] [PubMed] [Google Scholar]
  10. R. A. Gatenby, T. L. Vincent. Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic strategies. Mol. Can. Therap., 2 (2003), 919-927. [Google Scholar]
  11. R. A. Gatenby, R. J. Gillies. Why do cancers have high aerobic glycolysis? Nature Rev. Can., 4 (2004), 891-899. [CrossRef] [PubMed] [Google Scholar]
  12. G. Gause. The struggle for existence. Courier Dover Publications, 2003. [Google Scholar]
  13. A. N. Gorban. Equilibrium encircling. Equations of chemical kinetics and their thermodynamic analysis, Nauka, Novosibirsk, 1984. [Google Scholar]
  14. A. N. Gorban. Selection theorem for systems with inheritance. Math. Mod. Nat. Phen., 2 (2007), 1-45. [Google Scholar]
  15. J. Hofbauer, K. Sigmund. Evolutionary games and population dynamics. Cambridge University Press, 1998. [Google Scholar]
  16. Hardin, Garrett. The tragedy of the commons. Science, 162 (1968), 1243-1248. [CrossRef] [PubMed] [Google Scholar]
  17. G. H. Heppner, F. R. Miller. The cellular basis of tumor progression. Int. Rev. Cytol., 177 (1997), 1-56. [CrossRef] [Google Scholar]
  18. F.B. Hu, W. C. Willett, T. Li, M. J. Stampfer, G. A. Colditz, J. E. Manson. Adiposity as compared with physical activity in predicting mortality among women. N. Eng. J. Med., 351 (2004), 2694-2703. [CrossRef] [Google Scholar]
  19. S. Kapitza. The phenomenological theory of world population growth. Physics-Uspekhi, 39 (1996), 57-71. [CrossRef] [Google Scholar]
  20. S. Kapitza. Global Population Blow-Up and After: The Demographic Revolution and Information Society. Global Marshall Plan Initiative, 2006. [Google Scholar]
  21. G. P. Karev. Inhomogeneous models of tree stand self-thinning. Ecol. Mod., 160 (2003), 23-37. [CrossRef] [Google Scholar]
  22. G. P. Karev. Dynamics of inhomogeneous populations and global demography models. J. Biol. Sys., 13 (2005), 83-104. [CrossRef] [Google Scholar]
  23. G. P. Karev, A.R. Burk. Analytical models of forest dynamics in stable environment. In: New developments in ecology research. Nova Science Publishers, New York, USA (2006), 29-97. [Google Scholar]
  24. G. P. Karev, A. S. Novozhilov, E. V. Koonin. Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics. Biol. Dir., 1 (2006), 19. [CrossRef] [Google Scholar]
  25. G. P. Karev, A. S. Novozhilov, F. S. Berezovskaya. Modeling the dynamics of inhomogeneous natural rotifer populations under toxicant exposure. Ecol. Mod., 212, (2008), 80-85. [CrossRef] [Google Scholar]
  26. G. P. Karev. Inhomogeneous maps and mathematical theory of selection. Journal of Difference Equations and Applications, 14.1 (2008), 31-58. [CrossRef] [Google Scholar]
  27. G. P. Karev. On mathematical theory of selection, continuous time population dynamics. J. Math. Bio., 60 (2010), 107-129. [Google Scholar]
  28. G. P. Karev. Principle of minimum discrimination information and replica dynamics. Entropy, 12 (2010), 1673-1695. [CrossRef] [MathSciNet] [Google Scholar]
  29. G. P. Karev, A. S. Novozhilov, F. S. Berezovskaya. On the asymptotic behaviour of the solutions to the replicator equation. Math. Med. & Biol., 28 (2011), 89-110. [Google Scholar]
  30. I. Kareva. Prisoner’s Dilemma in Cancer Metabolism. PloS one, 6.12 (2011), e28576. [CrossRef] [Google Scholar]
  31. I. Kareva, F. Berezovskaya, C. Castillo-Chavez. Transitional regimes as early warning signals in resource dependent competition models. Math. Biosci., 240 (2012), 114-123. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. I. Kareva, F. Berezovskaya, C. Castillo-Chavez. Myeloid cells in tumour - immune interactions. J. Biol. Dyn., 4 (2010), 315-327. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  33. I. Kareva, B. Morin, G. Karev. Preventing the tragedy of the commons through punishment of over-consumers and encouragement of under-consumers. Bull. Math. Biol., 75, (2013), 565-588. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  34. G. F. Khilmi. Foundations of the Physics of the Biosphere, 1967. [Google Scholar]
  35. N. Komarova. Mathematical modeling of tumorigenesis: mission possible. Curr. Opin. Oncol., 17 (2005), 39-43. [CrossRef] [PubMed] [Google Scholar]
  36. D.C. Krakauer, K. M. Page, D. H. Erwin. Diversity, dilemmas, and monopolies of niche construction. Am. Nat., 173 (2009), 26-40. [CrossRef] [PubMed] [Google Scholar]
  37. Y. Kuang, J. D. Nagy, J. J. Elser. Biological stoichiometry of tumor dynamics: mathematical models and analysis. Disc. Cont. Dyn. Sys. Ser. B, 4 (2004), 221-240. [Google Scholar]
  38. Y.A. Kuznetsov. Elements of applied bifurcation theory, Springer-Verlag, New York, 1995. [Google Scholar]
  39. J. Liebig. Chemistry applications to farming and physiology, 1876. [Google Scholar]
  40. F. McCormick. Cancer specific viruses and the development of ONYX-015. Canc. Biol. & Ther., 2 (2003), 156-159. [Google Scholar]
  41. A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin, G. P. Karev. Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biol. Dir., 1 (2006), 18. [CrossRef] [Google Scholar]
  42. A. S. Novozhilov. On the spread of epidemics in a closed heterogeneous population. Math. Biosci., 215 (2008), 177-185. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  43. A. S. Novozhilov. Epidemiological models with parametric heterogeneity: Deterministic theory for closed populations. Math. Mod. Nat. Phen., 7 (2012), 147-167. [CrossRef] [EDP Sciences] [Google Scholar]
  44. A. S. Novozhilov. Analysis of a generalized population predator-prey model with a parameter distributed normally over the individuals in the predator population. J. Comp. Sys. Sci. Int., 43 (2004), 378-382. [Google Scholar]
  45. A. S. Novozhilov. Heterogeneous Susceptibles-Infectives model: Mechanistic derivation of the power law transmission function. Dyn. Cont., Disc. & Impul. Sys., Ser. A, Math. Anal., 16 (2009), 136-140. [Google Scholar]
  46. M. Nowak, R. M. May. Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology. Oxford University Press, 2000. [Google Scholar]
  47. E. Ostrom. Coping with tragedies of the commons. Ann. Rev. Pol. Sci., 2 (1999), 493-535. [CrossRef] [Google Scholar]
  48. I.A. Poletaev. On mathematical models of elementary processes in biogeocoenosis. Problems of Cibernetics, 16 (1966), 171-190. [Google Scholar]
  49. T.W. Snell, M. Serra. Dynamics of natural rotifer populations. Hydrobio., 368 (1998), 29-35. [CrossRef] [Google Scholar]
  50. A. Tsoularis, J. Wallace. Analysis of logistic growth models. Math. Biosci., 179 (2002), 21-55. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  51. M. E. Wright, S. C. Chang, A. Schatzkin, D. Albanes, V. Kipnis, T. Mouw, P. Hurwitz, A. Hollenbeck, M. F. Leitzmann. Prospective study of adiposity and weight change in relation to prostate cancer incidence and mortality. Cancer, 109 (2007), 675-684. [CrossRef] [PubMed] [Google Scholar]
  52. V.V. Zagreev. Reference Book on All-Union Forest Growth Tables. Kolos, Moscow, 1992. [Google Scholar]
  53. K. B. Zeldovich, P. Chen, B. E. Shakhnovich, E. I. Shakhnovich. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds. PLoS Comp. Biol., 3 (2007), e139. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.