Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 3, 2014
Biological evolution
Page(s) 96 - 106
Published online 28 May 2014
  1. A. Baker, B. Audit, S. C. H. Yang, J. Bechhoefer, A. Arneodo. Inferring Where and When Replication Initiates from Genome-Wide Replication Timing Data. Phys. Rev. Let., 108 (2012), 268101, 1–5. [Google Scholar]
  2. A. Baker, C. L. Chen, H. Julienne, B. Audit, Y. dÕAubenton-Carafa, C. Thermes, A. Arneodo. Linking the DNA strand asymmetry to the spatio-temporal replication program I. About the role of the replication fork polarity in genome evolution. Europ. Phys. J. E, 35 (2012), 92, 1–25. [Google Scholar]
  3. A. Baker, H. Julienne, C. L. Chen, B. Audit, Y. dÕAubenton-Carafa, C. Thermes, A. Arneodo. Linking the DNA strand asymmetry to the spatio-temporal replication program II. Accounting for neighbor-dependent substitution rates. Europ. Phys. J. E, 35 (2012), 123, 1–12. [Google Scholar]
  4. J. Bechhoefer, N. Rhind. Replication timing and its emergence from stochastic processes. Tren. in Gen., 28 (2012), 374–381. [CrossRef] [Google Scholar]
  5. E. Besnard, A. Babied, L. Lapasset, O. Milhavet, H. Parrinello, C. Dantec, J. M. Marin, J.M. Lemaitre. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. & Mol. Biol., 19 (2012), 837–844. [Google Scholar]
  6. E.B. Brodie of Brodie, S. Nicolay, M. Touchon, B. Audit, Y. d’Aubenton-Carafa, C. Thermes, A. Arneodo. From DNA sequence analysis to modeling replication in the human genome. Phys. Rev. Let., 94 (2005), 248103, 1–4. [CrossRef] [PubMed] [Google Scholar]
  7. C. Cayrou, P. Coulombe, A. Vigneron, S. Stanojcic, O. Ganier, I. Peiffer, A. Puy, S. Laurent-Chabalier, R. Desprat, M. Mechali. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Gen. Res., 21 (2011), 1438–1449. [Google Scholar]
  8. C. Cayrou, P. Coulombe, A. Puy, S. Rialle, N. Kaplan, E. Segal, M. Mechali. New insights into replication origin characteristics in metazoans. Cell Cycl., 11 (2012), 658–667. [CrossRef] [Google Scholar]
  9. Y. Clement, P. F. Arndt. Meiotic Recombination Strongly Influences GC-Content Evolution in Short Regions in the Mouse Genome. Mol. Biol. & Evol., 30 (2013), 2612–2618. [CrossRef] [Google Scholar]
  10. C. Costas, M. D. Sanchez, H. Stroud, Y. Yu, J. C. Oliveros, S. Feng, A. Benguria, I. Lopez-Vidriero, X. Zhang, R. Solano, S. E. Jacobsen, C. Gutierrez. Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nat. Struct. & Mol. Biol., 18 (2011), 395–U190. [CrossRef] [Google Scholar]
  11. N. Donley, M. J. Thayer. DNA replication timing, genome stability and cancer. Late and/or delayed DNA replication timing is associated with increased genomic instability. Sem. in Canc. Biol., 23 (2013), 80–89. [CrossRef] [Google Scholar]
  12. A. P. S. de Moura, R. Retkute, M. Hawkins, C. A. Nieduszynski. Mathematical modelling of whole chromosome replication. NAR, 38 (2010), 5623–5633. [CrossRef] [PubMed] [Google Scholar]
  13. M. dos Reis, L. Wernisch. Estimating Translational Selection in Eukaryotic Genomes. Mol. Biol. & Evol., 26 (2009), 451–461. [CrossRef] [Google Scholar]
  14. F. Gao, H. Luo, C. T. Zhang. DeOri: a database of eukaryotic DNA replication origins. Bioinformatics, 28 (2012), 1551–1552. [CrossRef] [PubMed] [Google Scholar]
  15. F. Gao, H. Luo, C. T. Zhang. DoriC 5.0: an updated database of oriC regions in both bacterial and archaeal genomes. NAR, 41 (2013), 90–93. [CrossRef] [Google Scholar]
  16. M. G. Gauthier, P. Norio, J. Bechhoefer. Modeling Inhomogeneous DNA Replication Kinetics, PLoS one, 7 (2012), e32053-1–13. [Google Scholar]
  17. A. Gierlik, M. Kowalczuk, P. Mackiewicz, M. R. Dudek, S. Cebrat. Is there replication-associated mutational pressure in the Saccharomyces cerevisiae genome?. J. Theor. Biol., 202 (2000), 305–314. [CrossRef] [PubMed] [Google Scholar]
  18. P. Green, B. Ewing, W. Miller, P. Thomas, E. Green. Transcription-associated mutational asymmetry in mammalian evolution. Nat. Gen., 33 (2003), 14–517. [CrossRef] [PubMed] [Google Scholar]
  19. M. Hayashi, Y. Katou, T. Itoh, M. Tazumi, Y. Yamada, T. Takahashi, T. Nakagawa, K. Shirahige, H. Masukata. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J., 26 (2007), 1327–1339. [CrossRef] [PubMed] [Google Scholar]
  20. O. Hyrien, A. Rappailles, G. Guilbaud, A. Baker, C. L. Chen, A. Goldar, N. Petryk, M. Kahli, E. Ma, Y. d’Aubenton-Carafa, B. Audit, C. Thermes, A. Arneodo. From Simple Bacterial and Archaeal Replicons to Replication N/U-Domains. J. Mol. Biol., 425 (2013), 4673–89. [CrossRef] [PubMed] [Google Scholar]
  21. M. Kellis, B. W. Birren, E. S. Lander. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature, 428 (2008), 617–624. [CrossRef] [Google Scholar]
  22. M. L. DePamphilis. DNA replication and human disease. Cold Spring Harbor monograph series. [Google Scholar]
  23. G. I. Lang, A. W. Murray. Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing. Gen. Biol. & Evol., 3 (2011), 799–811. [CrossRef] [Google Scholar]
  24. A. C. Leonard, M. Mechali. DNA Replication Origins. Cold Spring Harbor Persp. Biol., 5 (2013), a010116, 1–18. [Google Scholar]
  25. I. Liachko, A. Bhaskar, C. Lee, S. C. C. Chung, B. K. Tye, U. Keich. A Comprehensive genome-wide map of autonomously replicating sequences in a naive genome. PLoS Gen., 6 (2010), e1000946, 1–12. [CrossRef] [Google Scholar]
  26. L. Liu, S. De, F. Michor. DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes. Nat. Comm., 4 (2013), 1502, 1–10. [Google Scholar]
  27. M. Lundgren, A. Andersson, L. M. Chen, P. Nilsson, R. Bernander. Three replication origins in Sulfolobus species: Synchronous initiation of chromosome replication and asynchronous termination. PNAS, 101 (2004), 7046–7051. [CrossRef] [Google Scholar]
  28. H. E. Luo, J. T. Li, M. Eshaghi, J. H. Liu, R. K. M. Karuturi. Genome-wide estimation of firing efficiencies of origins of DNA replication from time-course copy number variation data. BMC Bioinf., 11 (2010), 1–15. [CrossRef] [Google Scholar]
  29. J. Lygeros, K. Koutroumpas, S. Dimopoulos, I. Legouras, P. Kouretas, C. Heichinger, P. Nurse, Z. Lygerou. Stochastic hybrid modeling of DNA replication across a complete genome. PNAS, 105 (2008), 12295–12300. [CrossRef] [Google Scholar]
  30. M. Lynch. The origins of the genome architecture. Sinauer Associates Inc Publishers, Massachusetts. [Google Scholar]
  31. M. Lynch. Evolution of the mutation rate. Tr. Gen., 26 (2010), 345–52. [Google Scholar]
  32. A. T. McGeoch, S.D. Bell. Extra-chromosomal elements and the evolution of cellular DNA replication machineries. Nat. Rev. Mol. Cell Biol., 9 (2008), 569–574. [CrossRef] [PubMed] [Google Scholar]
  33. M. Mechali, K. Yoshida, P. Coulombe, P. Pasero. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr. Op. Gen., & Dev., 23 (2013), 124–31. [Google Scholar]
  34. C. A. Muller, C. A. Nieduszynski. Conservation of replication timing reveals global and local regulation of replication origin activity. Gen. Res., 22 (2012), 1953–1962. [CrossRef] [Google Scholar]
  35. M. A. Nowak, H. Ohtsuki. Prevolutionary dynamics and the origin of evolution. PNAS, 105 (2008), 14924–14927. [CrossRef] [Google Scholar]
  36. S.Ohno. Evolution by Gene Duplication. Springer-Verlag, London. [Google Scholar]
  37. E. A. Pelve, A. C. Lindas, A. Knoppel, A. Mira, R. Bernander. Four chromosome replication origins in the archaeon Pyrobaculum calidifontis. Mol. Microbiol., 85 (2012), 986–995. [CrossRef] [PubMed] [Google Scholar]
  38. T. J. Pohl, K. Kolor, W. L. Fangman, B. J. Brewer, M. K. Raghuraman. A DNA Sequence Element That Advances Replication Origin Activation Time in Saccharomyces cerevisiae. G3, 3 (2013), 1955–1963. [CrossRef] [Google Scholar]
  39. B. D. Pope, D. M. Gilbert. The Replication Domain Model: Regulating Replicon Firing in the Context of Large-Scale Chromosome Architecture. J. Mol. Biol., 425 (2013), 4690–4695. [CrossRef] [PubMed] [Google Scholar]
  40. J. G. D. Prendergast, H. Campbell, N. Gilbert, M. G. Dunlop, W. A. Bickmore, C. A. M. Semple. Chromatin structure and evolution in the human genome. BMC Evol. Biol., 7 (2007), 1–12. [CrossRef] [PubMed] [Google Scholar]
  41. E. P. C. Rocha. The Organization of the Bacterial Genome. Ann. Rev. Gen., 42 (2008), 211–233. [CrossRef] [Google Scholar]
  42. N. P. Robinson, S. D. Bell. Origins of DNA replication in the three domains of life. FEBS J., 272 (2005), 3757–3766. [CrossRef] [PubMed] [Google Scholar]
  43. C. C. Siow, S. R. Nieduszynska, C. A. Muller, C. A. Nieduszynski. OriDB, the DNA replication origin database updated and extended. NAR, 40 (2012), D682–D686. [CrossRef] [Google Scholar]
  44. K. Skarstad, H. B. Steen, E. Boye. Cell Cycle Parameters of Slowly Growing Escherichia coli B/r Studied by Flow Cytometry. J. Bacteriol., 124 (1983), 656–662. [Google Scholar]
  45. O. Skovgaard, M. Bak, A. Lobner-Olesen, N. Tommerup. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing. Gen. Res., 21 (2011), 1388–1393. [CrossRef] [Google Scholar]
  46. A. Srivatsan, A. Tehranchi, D. M. MacAlpine, J. D. Wang. Co-Orientation of Replication and Transcription Preserves Genome Integrity. PLoS Gen., 6 (2010), e1000810, 1–14. [CrossRef] [Google Scholar]
  47. J. A. Stamatoyannopoulos, I. Adzhubei, R. E. Thurman, G. V. Kryukov, S. M. Mirkin, S. R. Sunyaev. Human mutation rate associated with DNA replication timing. Nat. Gen., 41 (2009), 393–395. [CrossRef] [PubMed] [Google Scholar]
  48. T. Tatarinova, E. Elhaik, M. Pellegrini. Cross-Species Analysis of Genic GC(3) Content and DNA Methylation Patterns. Gen. Biol. & Evol., 5 (2013), 1443–1456. [CrossRef] [Google Scholar]
  49. E. Yaffe, S. Farkash-Amar, A. Polten, Z. Yakhini, A. Tanay, I. Simon. Comparative Analysis of DNA Replication Timing Reveals Conserved Large-Scale Chromosomal Architecture. PLoS Gen., 6 (2010), e1001011, 1–12. [CrossRef] [PubMed] [Google Scholar]
  50. S. C. H. Yang, N. Rhind, J. Bechhoefer. Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol. Syst. Biol., 6 (2012), 404, 1–13. [Google Scholar]
  51. C. C. Weber, C. J. Pink, L. D. Hurst. Late-Replicating Domains Have Higher Divergence and Diversity in Drosophila melanogaster. Mol. Biol. & Evol., 29 (2012), 873–882. [CrossRef] [Google Scholar]
  52. P. Worning, L. J. Jensen, P. H. Hallin, H. H. Staerfeldt, D. W. Ussery. Origin of replication in circular prokaryotic chromosomes. Env. Biol., 8 (2006), 353–361. [Google Scholar]
  53. Z. Wu, H. Liu, Hailong, J. Liu, X. Q. Liu, H. Xiang. Diversity and evolution of multiple orc/cdc6-adjacent replication origins in haloarchaea. BMC Gen., 13 (2012), 1–16. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.