Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 3, 2014
Biological evolution
Page(s) 107 - 123
Published online 28 May 2014
  1. S.S. Apte, M.G. Mattei, B.R. Olsen. Mapping of the human BAX gene to chromosome 19q13.3-q13.4 and isolation of a novel alternatively spliced transcript, BAX delta. Genomics, 26 (1995), 592-594. [CrossRef] [PubMed] [Google Scholar]
  2. C.J. Bakkenist, M.B. Kastan. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421 (2003), 499-506. [CrossRef] [PubMed] [Google Scholar]
  3. E. Batchelor, C.S. Mock, I. Bhan, A. Loewer, G. Lahav. Recurrent initiation: A mechanism for triggering p53 pulses in response to DNA damage. Molecular Cell, 30 (2008), 277-289. [CrossRef] [PubMed] [Google Scholar]
  4. E. Batchelor, A. Loewer, G. Lahav. The ups and downs of p53: understanding protein dynamics in single cells. Nature Reviews Cancer, 9 (2009), 371-377. [CrossRef] [PubMed] [Google Scholar]
  5. C. Blattner, T. Hay, D.W. Meek, D.P. Lane. Hypophosphorylation of Mdm2 augments p53 stability. Molecular and Cellular Biology, 22 (2002), 6170-6182. [CrossRef] [PubMed] [Google Scholar]
  6. A.M. Bode, Z. Dong. Post-translational modifications of p53 in tumorigenesis. Nat. Rev. Cancer, 4 (2004), 793-805. [CrossRef] [PubMed] [Google Scholar]
  7. A. Cangiani, R. Natalini. A spatial model of cellular molecular trafficking including active transport along microtubules. J. Theor. Biol., 267 (2010), 614-625. [CrossRef] [PubMed] [Google Scholar]
  8. A. Carracedo, A. Alimonti, P.P. Pandolfi. PTEN level in tumor suppression: how much is too little? Cancer Research, 71 (2011), 629-633. [CrossRef] [PubMed] [Google Scholar]
  9. C.H. Chung, K. Ely, L. McGavran, M. Varella-Garcia, J. Parker, N. Parker, C. Jarrett, J. Carter, B.A. Murphy, J. Netterville, B.B. Burkey, R. Sinard, A. Cmelak, S. Levy, W.G. Yarbrough, R.J. Slebos, F.R. Hirsch. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J. Clin. Oncol., 24 (2006), 4170-4176. [CrossRef] [PubMed] [Google Scholar]
  10. A. Ciliberto, B. Novak, J. Tyson. Steady states and oscillations in the p53/Mdm2 network. Cell Cycle, 4:3 (2005), 488-493. [CrossRef] [PubMed] [Google Scholar]
  11. S.E. Coupland, N. Bechrakis, A. Schuler, I. Anagnostopoulos, M. Hummel, N. Bornfeld, H. Stein. Expression patterns of cyclin D1 and related proteins regulating G1-S phase transition in uveal melanoma and retinoblastoma. Br. J. Ophthalmol., 82 (1998), 961-970. [CrossRef] [PubMed] [Google Scholar]
  12. L. Dimitrio, J. Clairambault, R. Natalini. A spatial physiological model for p53 intracellular dynamics. J. Theor. Biol., 316 (2012), 9-24. [Google Scholar]
  13. N. Geva-Zatorsky, N. Rosenfeld, S. Itzkovitz, R. Milo, A. Sigal, E. Dekel, T. Yarnitzky, Y. Liron, P. Polak, G. Lahav, U. Alon. Oscillations and variability in the p53 system. Mol. Sys. Biol., 2 (2006), 0033. [Google Scholar]
  14. P. Giannakakou, D.L. Sackett, Y. Ward, K.R. Webster, M.V. Blagosklonny, T. Fojo. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat. Cell Biol., 2 (2000), 709-717. [CrossRef] [PubMed] [Google Scholar]
  15. P. Hikisz, Z.M. Kilianska. Puma, a critical mediator of cell death - one decade on from its discovery. Cell. Mol. Biol. Lett., 17 (2012), 646-669. [CrossRef] [PubMed] [Google Scholar]
  16. K.K. Khanna, M.F. Lavin, S.P. Jackson, T.D. Mulhern. ATM, a central controller of cellular responses to DNA damage. Cell Death Diff., 8 (2001), 1052-1065. [CrossRef] [Google Scholar]
  17. G. Lahav, N. Rosenfield, A. Sigal, N. Geva-Zatorsky, A.J. Levine, M.B. Elowitz, U. Alon. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Gen., 36 (2004), 147-150. [CrossRef] [PubMed] [Google Scholar]
  18. A. Loewer, E. Batchelor, G. Gaglia, G. Lahav. Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell, 142 (2010), 89-100. [CrossRef] [PubMed] [Google Scholar]
  19. L. Ma, J. Wagner, J.J. Rice, W. Hu, A.J. Levine, G.A. Stolovitzky. A plausible model for the digital response of p53 to DNA damage. Proc. Natl. Acad. Sci. USA, 102 (2005), 14266-14271. [CrossRef] [Google Scholar]
  20. J.J. Manfredi. The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes & Development, 24 (2010), 1580-1589. [CrossRef] [PubMed] [Google Scholar]
  21. J.C. Marine. p53 stabilization: the importance of nuclear import. Cell Death Diff., 17 (2010), 191-192. [CrossRef] [Google Scholar]
  22. L.D. Mayo, D.B. Donner. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl. Acad. Sci. USA, 98 (2001), 11598-11603. [CrossRef] [Google Scholar]
  23. G.I. Mihalas, M. Neamtu, D. Opris, R.F. Horhat. A dynamic P53-MDM2 model with time delay. Chaos, Solitons and Fractals, 30 (2006), 936-945. [CrossRef] [MathSciNet] [Google Scholar]
  24. N. Monk. Oscillatory expression of Hes1, p53, and NF-кB driven by transcriptional time delays. Curr. Biol., 13 (2003), 1409-1413. [CrossRef] [PubMed] [Google Scholar]
  25. C.C. Morton. Cancer sentry flashes two-tiered warning,, 2010. [Google Scholar]
  26. H. Offer, M. Milyavsky, N. Erez, D. Matas, I. Zurer, C.C. Harris, V. Rotter. Structural and functional involvement of p53 in BER in vitro and in vivo. Oncogene, 20 (2001), 581-589. [CrossRef] [PubMed] [Google Scholar]
  27. Y. Ogawara, S. Kishishita, T. Obata, Y. Isazawa, T. Suzuki, K. Tanaka, N. Masuyama, Y. Gotoh. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J. Biol. Chem., 277 (2002), 21843-21850. [CrossRef] [PubMed] [Google Scholar]
  28. D.A. Ouattara, W. Abou-Jaoude, M. Kaufman. From structure to dynamics: Frequency tuning in the p53-Mdm2 network. II Differential and stochastic approaches. J. Theor. Biol., 264 (2010), 1177-1189. [CrossRef] [PubMed] [Google Scholar]
  29. C.J. Proctor, D.A. Gray. Explaining oscillations and variability in the p53-Mdm2 system. BMC Systems Biology, 2 (2008), 1-20. [CrossRef] [PubMed] [Google Scholar]
  30. T. Pu, X.P. Zhang, F. Liu, W. Wang. Coordination of the nuclear and cytoplasmic activities of p53 in response to DNA damage. Biophysical Journal, 99 (2010), 1696-1705. [CrossRef] [PubMed] [Google Scholar]
  31. K. Puszynski, B. Hat, T. Lipniacki. Oscillations and bistability in the stochastic model of p53 regulation. J. Theor. Biol., 254 (2008), 452-465. [CrossRef] [PubMed] [Google Scholar]
  32. K. Puszynski, R. Bertolusso, T. Lipniacki. Crosstalk between p53 and NF-кB systems: pro- and anti-apoptotic functions of NF-кB. IET Sys. Biol., 3 (2009), 356-367. [CrossRef] [Google Scholar]
  33. P. Ragazzini, G. Gamberi, M.S. Benassi, C. Orlando, R. Sestini, C. Ferrari, L. Molendini, M.R. Sollazzo, M. Merli, G. Magagnoli, F. Bertoni, T. Bohling, M. Pazzagli, P. Picci. Analysis of SAS gene and CDK4 and MDM2 proteins in low-grade osteosarcoma. Cancer Detection and Prevention, 23 (1999), 129-136. [CrossRef] [PubMed] [Google Scholar]
  34. D.R. Schrider, M.W. Hahn. Gene copy-number polymorphism in nature. Proc. Roy. Soc. B, 277 (2010), 3213-3221. [CrossRef] [Google Scholar]
  35. M.L. Smith, Y.R. Seo. p53 regulation of DNA excision repair pathways. Mutagenesis, 17 (2002), 149-156. [CrossRef] [PubMed] [Google Scholar]
  36. V. Stambolic, D. MacPherson, D. Sas, Y. Lin, B. Snow, Y. Jang, S. Benchimol, T.W. Mak. Regulation of PTEN transcription by p53. Mol. Cell, 8 (2001), 317-325. [Google Scholar]
  37. A.H. Stegh. Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils. Expert Opinion on Therapeutic Targets, 16 (2012), 67-83. [CrossRef] [PubMed] [Google Scholar]
  38. J.M. Stommel, G.M. Wahl. A new twist in the feedback loop: stress-activated MDM2 destabilisation is required for p53 activation. Cell Cycle, 4 (2005), 411-417. [CrossRef] [PubMed] [Google Scholar]
  39. M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A.J. Chaplain. Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways. J. Theor. Biol., 273 (2011), 15-31. [CrossRef] [PubMed] [Google Scholar]
  40. M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A.J. Chaplain. Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53-Mdm2 pathways: insights from spatio-temporal modelling. B. Math. Biol., 74 (2012), 1531-1579. [CrossRef] [Google Scholar]
  41. A.J. Terry, M. Sturrock, J.K. Dale, M. Maroto, M.A.J. Chaplain. A spatio-temporal model of Notch signalling in the zebrafish segmentation clock: conditions for synchronised oscillatory dynamics. PLoS ONE, 6 (2011), e16980. [CrossRef] [PubMed] [Google Scholar]
  42. A.J. Terry, M.A.J. Chaplain. Spatio-temporal modelling of the NF-кB signalling pathway: The roles of diffusion, active transport, and cell geometry. J. Theor. Biol., 290 (2011), 7-26. [CrossRef] [PubMed] [Google Scholar]
  43. R. Weinberg. The Biology of Cancer. Garland Science: Taylor & Francis Group, 2007. [Google Scholar]
  44. D.P. Xirodimas, C.W. Stephen, D.P. Lane. Cocompartmentalization of p53 and Mdm2 is a major determinant for Mdm2-mediated degradation of p53. Experimental Cell Research, 270 (2001), 66-77. [CrossRef] [PubMed] [Google Scholar]
  45. T. Zhang, P. Brazhnik, J.J. Tyson. Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle, 6 (2007), 85-94. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.