Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 3, 2014
Biological evolution
Page(s) 124 - 137
DOI https://doi.org/10.1051/mmnp/20149308
Published online 28 May 2014
  1. R. D. Alexander. Darwinism and human affairs. Seattle, University of Washington Press, 1979. [Google Scholar]
  2. R. D. Alexander. The biology of moral systems. New York, Aldine de Gruyter, 1987. [Google Scholar]
  3. L. W. Beukeboom, R. C. Vrijenhoek. Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J. Evol. Biol, 11 (1998), 755–782. [CrossRef] [Google Scholar]
  4. Å. Brännström, U. Dieckmann. Evolutionary dynamics of altruism and cheating among social amoebas. Proc. R. Soc. London B, 272 (2005), 1609–1616. [CrossRef] [Google Scholar]
  5. Å. Brännström, D. J. T. Sumpter. The role of competition and clustering in population dynamics. Proc. R. Soc. London B, 272 (2005), 2065–2072. [CrossRef] [Google Scholar]
  6. F. B. Christiansen. On conditions for evolutionary stability for a continuously varying character. Am. Nat., 138 (1991), 37–50. [CrossRef] [Google Scholar]
  7. M. Doebeli, C. Hauert, T. Killingback. The evolutionary origin of cooperators and defectors. Science, 306 (2004), 859–862. [CrossRef] [PubMed] [Google Scholar]
  8. I. Eshel. Evolutionary and continuous stability. J. Theor. Biol., 103 (1983), 99–111. [CrossRef] [Google Scholar]
  9. H. Eskola, S. A. H. Geritz. On the mechanistic derivation of various discrete-time population models. Bull. Math. Biol., 69 (2007), 329–346. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. H. Eskola, K. Parvinen. On the mechanistic underpinning of discrete-time population models with Allee effect. Theor. Popul. Biol., 72 (2007), 41–51. [CrossRef] [PubMed] [Google Scholar]
  11. H. Eskola, K. Parvinen. The Allee effect in mechanistic models based on inter-individual interaction processes. Bull. Math. Biol., 72 (2010), 184–207. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. R. Ferrière. Adaptive responses to environmental threats: evolutionary suicide, insurance, and rescue. Options Spring 2000, IIASA, Laxenburg, Austria, 12–16, 2000. [Google Scholar]
  13. J. A. Fletcher, M. Doebeli. A simple and general explanation for the evolution of altruism. Proc. R. Soc. London B, 276 (2009), 13–19. [CrossRef] [Google Scholar]
  14. S. A. H. Geritz, É. Kisdi, G. Meszéna, J. A. J. Metz. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12 (1998), 35–57. [CrossRef] [Google Scholar]
  15. S. A. H. Geritz, J. A. J. Metz, É. Kisdi, G. Meszéna. Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett., 78 (1997), 2024–2027. [Google Scholar]
  16. M. Gyllenberg, J. A. J. Metz. On fitness in structured metapopulations. J. Math. Biol., 43 (2001), 545–560. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. M. Gyllenberg, K. Parvinen. Necessary and sufficient conditions for evolutionary suicide. Bull. Math. Biol., 63 (2001), 981–993. [CrossRef] [PubMed] [Google Scholar]
  18. M. Gyllenberg, K. Parvinen, U. Dieckmann. Evolutionary suicide and evolution of dispersal in structured metapopulations. J. Math. Biol., 45 (2002), 79–105. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. W. D. Hamilton. The genetical evolution of social behaviour I. J. Theor. Biol, 7 (1964), 1–16. [CrossRef] [PubMed] [Google Scholar]
  20. W. D. Hamilton. The genetical evolution of social behaviour II. J. Theor. Biol, 7 (1964), 17–52. [CrossRef] [PubMed] [Google Scholar]
  21. K. Heubel, D. Rankin, H. Kokko. How to go extinct by mating too much: population consequences of male mate choice and efficiency in a sexual-asexual species complex. Oikos, 118 (2009), 513–520. [CrossRef] [Google Scholar]
  22. H. Kokko, K. Heubel, D. Rankin. How populations persist when asexuality requires sex: the spatial dynamics of coping with sperm parasites. Proc. R. Soc. London B, 275 (2008), 817–825. [CrossRef] [Google Scholar]
  23. H. Kokko, K. U. Heubel. Prudent males, group adaptation, and the tragedy of the commons. Oikos, 120 (2011), 641–656. [CrossRef] [Google Scholar]
  24. R. Levins. Some demographic and genetic consequenses of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am., 15 (1969), 237–240. [Google Scholar]
  25. R. Levins. Extinction. In M. Gerstenhaber, editor, Some Mathematical Problems in Biology. American Mathematical Society, Providence, RI, (1970), 77–107. [Google Scholar]
  26. H. Matsuda. Evolutionarily stable strategies for predator switching. J. Theor. Biol, 115 (1985), 351–366. [CrossRef] [Google Scholar]
  27. J. Maynard Smith. Evolution and the theory of games. Amer. Sci., 64 (1976), 41–45. [CrossRef] [Google Scholar]
  28. J. A. Mee, F. Noddin, J. R. Hanisch, W. M. Tonn, C. A. Paszkowski. Diets of sexual and sperm-dependent asexual dace (Chrosomus spp.): relevance to niche differentiation and mate choice hypotheses for coexistence. Oikos, 122 (2013), 998–1008. [CrossRef] [Google Scholar]
  29. J. A. Mee, S. P. Otto. Variation in the strength of male mate choice allows long-term. Evolution, 64 (2010), 2808–2819. [PubMed] [Google Scholar]
  30. J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs, J. S. van Heerwaarden. Adaptive dynamics, a geometrical study of the consequenses of nearly faithful reproduction. In S. J. van Strien and S. M. Verduyn Lunel, editors, Stochastic and Spatial Structures of Dynamical Systems. North-Holland, Amsterdam, (1996), 183–231. [Google Scholar]
  31. J. A. J. Metz, M. Gyllenberg. How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. London B, 268 (2001), 499–508. [CrossRef] [Google Scholar]
  32. J. A. J. Metz, R. M. Nisbet, S. A. H. Geritz. How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol., 7 (1992), 198–202. [CrossRef] [PubMed] [Google Scholar]
  33. W. S. Moore. Components of fitness in a unisexual fish Poeciliopsis monacha-occidentalis. Evolution, 30 (1976), 564–578. [CrossRef] [PubMed] [Google Scholar]
  34. M. A. Nowak, K. Sigmund. The dynamics of indirect reciprocity. J. Theor. Biol, 194 (1998), 561–574. [CrossRef] [PubMed] [Google Scholar]
  35. M. A. Nowak, K. Sigmund. Evolution of indirect reciprocity by image scoring. Nature, 393 (1998), 573–577. [CrossRef] [PubMed] [Google Scholar]
  36. M. A. Nowak, K. Sigmund. Evolution of indirect reciprocity. Nature, 437 (2005), 1291–1298. [CrossRef] [PubMed] [Google Scholar]
  37. H. Ohtsuki, Y. Iwasa. The leading eight: Social norms that can maintain cooperation by indirect reciprocity. J. Theor. Biol., 239 (2006), 435–444. [CrossRef] [PubMed] [Google Scholar]
  38. K. Parvinen. Evolutionary suicide. Acta Biotheoretica, 53 (2005), 241–264. [CrossRef] [PubMed] [Google Scholar]
  39. K. Parvinen. Evolution of dispersal in a structured metapopulation model in discrete time. Bull. Math. Biol., 68 (2006), 655–678. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  40. K. Parvinen. Evolutionary suicide in a discrete-time metapopulation model. Evol. Ecol. Res., 9 (2007), 619–633. [Google Scholar]
  41. K. Parvinen. Adaptive dynamics of altruistic cooperation in a metapopulation: Evolutionary emergence of cooperators and defectors or evolutionary suicide? Bull. Math. Biol., 73 (2011), 2605–2626. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  42. K. Parvinen, U. Dieckmann. Self-extinction through optimizing selection. J. Theor. Biol, 333 (2013), 1–9. [CrossRef] [PubMed] [Google Scholar]
  43. K. Parvinen, U. Dieckmann. Evolutionary suicide. In U. Dieckmann and J. A. J. Metz, editors, Elements of Adaptive Dynamics. Cambridge University Press, (in press). [Google Scholar]
  44. K. Parvinen, U. Dieckmann, M. Gyllenberg, J. A. J. Metz. Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evol. Biol, 16 (2003), 143–153. [Google Scholar]
  45. K. Parvinen, J. A. J. Metz. A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution. Theor. Popul. Biol., 73 (2008), 517–528. [CrossRef] [PubMed] [Google Scholar]
  46. C. Rueffler, M. Egas, J. A. J. Metz. Evolutionary predictions should be based on individual-level traits. Am. Nat., 168 (2006), E148–E162. [CrossRef] [PubMed] [Google Scholar]
  47. D. Schley, C. P. Doncaster, T. Sluckin. Population models of sperm-dependent parthenogenesis. J. Theor. Biol, 229 (2004), 559–572. [CrossRef] [PubMed] [Google Scholar]
  48. R. Sugden. The Evolution of Rights, Co-operation and Welfare.Oxford: Blackwell, 1986. [Google Scholar]
  49. D. J. T. Sumpter, D. S. Broomhead. Relating individual behaviour to population dynamics. Proc. R. Soc. London B, 268 (2001), 925–932. [Google Scholar]
  50. R. Trivers. The Evolution of Reciprocal Altruism. Q Rev Biol, 46 (1971), 35–57. [CrossRef] [Google Scholar]
  51. P. H. Van Tienderen, G. De Jong. Sex ratio under the haystack model: Polymorphism may occur. J. Theor. Biol., 122 (1986), 69–81. [CrossRef] [Google Scholar]
  52. R. C. Vrijenhoek. Factors affecting clonal diversity and coexistence. Am. Zool., 19 (1979), 787–797. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.