Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 3, 2014
Biological evolution
Page(s) 138 - 147
Published online 28 May 2014
  1. C.J. Barnard. Producers and scroungers: strategies of exploitation and parasitism. Springer, 1984. [Google Scholar]
  2. C.J. Barnard, R.M. Sibly. Producers and scroungers: a general model and its application to captive flocks of house sparrows. Anim. Behav., 29 (1981), 543–550. [CrossRef] [Google Scholar]
  3. E. Bonabeau, G. Theraulaz, J.L. Deneubourg. Dominance orders in animal societies: the self-organization hypothesis revisited. Bull. Math. Biol., 61 (1999), 727–757. [CrossRef] [PubMed] [Google Scholar]
  4. M. Broom, R.M. Luther, G.D. Ruxton. Resistance is useless? – extensions to the game theory of kleptoparasitism. Bull. Math. Biol., 66 (2004), 1645–1658. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. M. Broom, G.D. Ruxton. Evolutionarily stable kleptoparasitism: consequences of different prey types. Behav. Ecol., 14 (2003), 1, 23–33. [CrossRef] [Google Scholar]
  6. M. Broom, J. Rychtář. The evolution of a kleptoparasitic system under adaptive dynamics. J. Math. Biol., 54 (2007), 151–177. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. M. Broom, J. Rychtář. Kleptoparasitic melees – modelling food stealing featuring contests with multiple individuals. Bull. Math. Biol., 73 (2011), 683–699. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. M. Broom, J. Rychtář. Game-theoretical Models in Biology. vol. 48, CRC Press, 2013. [Google Scholar]
  9. M. Broom, J. Rychtář, D.G. Sykes. The effect of information on payoff in kleptoparasitic interactions. Topics from the 8th Annual UNCG Regional Mathematics and Statistics Conference, Springer, 2013, pp. 125–134. [Google Scholar]
  10. T. Caraco, L.A. Giraldeau. Social foraging: Producing and scrounging in a stochastic environment. J. Theor. Biol., 153 (1991), 559–583. [CrossRef] [Google Scholar]
  11. B.D. Davis, L.M. Dill. Intraspecific kleptoparasitism and counter-tactics in the archerfish (Toxotes chatareus). Behaviour, 149 (2012). 1367–1394. [CrossRef] [Google Scholar]
  12. J.K.V. Delhey, M. Carrete, M. Martínez. Diet and feeding behaviour of Olrog’s Gull Larus atlanticus in Bahía Blanca, Argentina. Ardea, 89 (2001), 319–329. [Google Scholar]
  13. F. Dubois, L.A. Giraldeau. Fighting for resources: the economics of defense and appropriation. Ecology, 86 (2005), 3–11. [CrossRef] [Google Scholar]
  14. F. Dubois, L.A. Giraldeau, J.W.A. Grant. Resource defense in a group-foraging context. Behav. Ecol., 14 (2003), 2–9. [CrossRef] [Google Scholar]
  15. L.A. Dugatkin. Winner and loser effects and the structure of dominance hierarchies. Behav. Ecol. 8 (1997), 583–587. [CrossRef] [Google Scholar]
  16. M. Enquist, O. Leimar. Evolution of fighting behaviour: the effect of variation in resource value. J. Theor. Biol., 127 (1987), 187–205. [CrossRef] [Google Scholar]
  17. M.P. Grimm, M. Klinge. Pike and some aspects of its dependence on vegetation. Craig J.F, editor. Pike: biology and exploitation, Chapman & Hall, 1996, pp. 125–156. [Google Scholar]
  18. I.M. Hamilton, L.M. Dill. The use of territorial gardening versus kleptoparasitism by a subtropical reef fish (Kyphosus cornelii) is influenced by territory defendability. Behav. Ecol., 14 (2003), 561–568. [CrossRef] [Google Scholar]
  19. A. Houston, J.M. McNamara. Models of adaptive behaviour: An Approach Based on State. Cambridge Univ. Pr., 1999. [Google Scholar]
  20. E.V. Iyengar. Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biol. J. Linn. Soc., 93 (2008), 745–762. [CrossRef] [Google Scholar]
  21. R.L. Jeanne. Social biology of the neotropical wasp Mischocyttarus drewseni. Bull. Mus. Comp. Zool., 144 (1972), 63–150. [Google Scholar]
  22. H. Kruuk. The spotted hyena: a study of predation and social behavior. Univ. Chicago Press, Chicago, 1972. [Google Scholar]
  23. M. Mesterton-Gibbons, L.A. Dugatkin. Toward a theory of dominance hierarchies: effects of assessment, group size and variation in fighting ability. Behav. Ecol., 6 (1995), 416–423. [CrossRef] [Google Scholar]
  24. G.A. Parker. Assessment strategy and the evolution of fighting behaviour. J. Theor. Biol., 47 (1974), 223–243. [CrossRef] [PubMed] [Google Scholar]
  25. H.K. Reeve, F.L.W. Ratnieks. Queen-queen conflicts in polygynous societies: mutual tolerance and reproductive skew. Queen number and sociality in insects, Keller, L. (ed.), Oxford Univ. Pr., Oxford, 1993, 45–85. [Google Scholar]
  26. L.B. Spear, S.N.G. Howell, C.S. Oedekoven, D. Legay, J. Bried. Kleptoparasitism by brown skuas on albatrosses and giant-petrels in the Indian Ocean. The Auk, (1999), 545–548. [Google Scholar]
  27. W.K. Steele, P.A.R. Hockey. Factors influencing rate and success of intraspecific kleptoparasitism among kelp gulls (Larus dominicanus). The Auk, (1995), 847–859. [Google Scholar]
  28. P. Triplet, R.A. Stillman, J.D. Goss-Custard. Prey abundance and the strength of interference in a foraging shorebird. J. Anim. Ecol., 68 (1999), 254–265. [CrossRef] [Google Scholar]
  29. S.L. Vehrencamp. Optimal degree of skew in cooperative societies. Amer. Zool., 23 (1983), 327–335. [Google Scholar]
  30. W.L. Vickery, L.A. Giraldeau, J.J. Templeton, D.L. Kramer, C.A. Chapman. Producers, scroungers and group foraging. Amer. Nat., (1991), 847–863. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.