Free Access
Foreword
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 4, 2014
Optimal control
Page(s) 1 - 5
DOI https://doi.org/10.1051/mmnp/20149401
Published online 20 June 2014
  1. S. Aniţa. Zero-stabilization for some diffusive models with state constraints. Math. Model. Nat. Phenom., 9 (2014), no. 3, 6–19. [CrossRef] [EDP Sciences]
  2. A. O. Belyakov, V. M. Veliov. Constant versus periodic fishing: age structured optimal control approach. Math. Model. Nat. Phenom., 9 (2014), no. 3, 20–37. [CrossRef] [EDP Sciences] [MathSciNet]
  3. R. Boucekkine, B. Martinez, J.R. Ruiz-Tamarit. Optimal sustainable policies under pollution ceiling: the demographic side. Math. Model. Nat. Phenom., 9 (2014), no. 3, 38–64. [CrossRef] [EDP Sciences]
  4. I.F. Bugariu, S. Micu. A numerical method with singular perturbation to approximate the controls of the heat equation. Math. Model. Nat. Phenom., 9 (2014), no. 3, 65–87. [CrossRef] [EDP Sciences]
  5. G. Dimitriu, T. Lorenzi, R. Stefanescu. Evolutionary dynamics and optimal control of chemotherapy in cancer cell populations under immune selection pressure. Math. Model. Nat. Phenom., 9 (2014), no. 3, 88–104. [CrossRef] [EDP Sciences]
  6. E.V. Grigorieva, E.N. Khailov. Optimal vaccination, treatment, and preventive campaigns in regard to the SIR epidemic model. Math. Model. Nat. Phenom., 9 (2014), no. 3, 105–121. [CrossRef] [EDP Sciences]
  7. N. Kato. Linear size-structured population models with spacial diffusion and optimal harvesting problems. Math. Model. Nat. Phenom., 9 (2014), no. 3, 122–130. [CrossRef] [EDP Sciences]
  8. U. Ledzewicz, H. Schättler. A review of optimal chemotherapy protocols: from MTD towards metronomic therapy. Math. Model. Nat. Phenom., 9 (2014), no. 3, 131–152. [CrossRef] [EDP Sciences]
  9. G. Marinoschi. Control approach to an ill-posed variational inequality. Math. Model. Nat. Phenom., 9 (2014), no. 3, 153–170. [CrossRef] [EDP Sciences]
  10. E. Numfor, S. Bhattacharya, S. Lenhart, M. Martcheva. Optimal control in coupled within-host and between-host models. Math. Model. Nat. Phenom., 9 (2014), no. 3, 171–203. [CrossRef] [EDP Sciences]
  11. J. Poleszczuk, M. J. Piotrowska, U. Forys. Optimal protocols for the anti-VEGF tumor treatment. Math. Model. Nat. Phenom., 9 (2014), no. 3, 204–215. [CrossRef] [EDP Sciences]
  12. A. Swierniak, J. Klamka. Local controllability of models of combined anticancer therapy with delays in control. Math. Model. Nat. Phenom., 9 (2014), no. 3, 216–226. [CrossRef] [EDP Sciences]
  13. Y. Yatsenko, N. Hritonenko, T. Bréchet. Modeling of environmental adaptation versus pollution mitigation. Math. Model. Nat. Phenom., 9 (2014), no. 3, 227–237. [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.