Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 4, 2014
Optimal control
Page(s) 65 - 87
DOI https://doi.org/10.1051/mmnp/20149405
Published online 20 June 2014
  1. S.A. Avdonin, S.A. Ivanov. Families of exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press, 1995. [Google Scholar]
  2. F. Boyer, J. Le Rousseau. Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations. Ann. Inst. Poincarè, Available online 12 September 2013, http://dx.doi.org/10.1016/j.anihpc.2013.07.011. [Google Scholar]
  3. E. Fernàndez-Cara, A. Münch. Numerical null-controllability of a semi-linear heat equation via a least squares method. C. R. Acad. Sci. Paris, Ser. I 340 (2005). [Google Scholar]
  4. C. Carthel, R. Glowinski, J.-L. Lions. On exact and approximate Boundary Controllability for the heat equation: A numerical approach. JOTA 82 (1994), 429–484. [Google Scholar]
  5. H.O. Fattorini, D.L. Russell. Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal., 43 (1971), 272–292. [Google Scholar]
  6. H.O. Fattorini, D.L. Russell. Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Q. Appl. Math., 32 (1974/75), 45–69. [Google Scholar]
  7. A.V. Fursikov, O.Yu. Imanuvilov. Controllability of Evolution Equations. Lecture Notes Series, Number 34, Seoul National University, Korea, 1996. [Google Scholar]
  8. T.J.R. Hughes. The finite element method: Linear static and dynamic finite element analysis. Prentice Hall Inc., Englewood Cliffs, NJ, 1987. [Google Scholar]
  9. A.E. Ingham. A note on Fourier transform. J. London Math. Soc., 9 (1934), 29–32. [CrossRef] [Google Scholar]
  10. E. Isaakson, H.B. Keller. Analysis of Numerical Methods, John Wiley and Sons, 1996. [Google Scholar]
  11. V. Komornik, P. Loreti. Fourier Series in Control Theory, Springer-Verlag, New-York, 2005. [Google Scholar]
  12. R. Lattés, J.-L. Lions. The Method of Quasi-Reversibility. Applications to Partial Differential Equations. Modern Analytic and Computational Methods in Science and Mathematics vol 18, New York: American Elsevier, 1969. [Google Scholar]
  13. G. Lebeau, L. Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations 20 (1995), 335–356. [Google Scholar]
  14. J. L. Lions. Controlabilité exacte, stabilisation et perturbations des systèmes distribués. Vol. 1, Masson, Paris, 1988. [Google Scholar]
  15. J.-L. Lions, E. Zuazua. The cost of controlling unstable systems: time irreversible systems. Rev. Mat. de la UCM 10 (1997), 481–523. [Google Scholar]
  16. J.-L. Lions, E. Zuazua. The cost of controlling unstable systems: the case of boundary controls, J. Anal. Math. 73 (1997), 225–249. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. López, E. Zuazua. Some new results related to the null-controllability of the 1-d heat equation. Sèm EDP, Ecole Polytech. VIII (1998), 1–22. [Google Scholar]
  18. A. López, X. Zhang, E. Zuazua. Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures Appl. 79 (2000), 741–808. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Micu, E. Zuazua. An Introduction to the Controllability of Partial Differential Equations. “Quelques questions de thèorie du contròle". Sari, T., ed., Collection Travaux en Cours Hermann, (2004), 69-157. [Google Scholar]
  20. S. Micu, E. Zuazua. On the regularity of null-controls of the linear 1-d heat equation. C. R. Acad. Sci. Paris, Ser. I 349 (2011), 673–677. [CrossRef] [Google Scholar]
  21. S. Micu, E. Zuazua. Regularity issues for the null-controllability of the linear 1-d heat equation. Systems & Control Letters 60 (2011), 406–413. [CrossRef] [Google Scholar]
  22. A. Münch, P. Pedregal. Numerical null controllability of the heat equation through a least squares and variational approach. European Journal of Applied Mathematics, Published online: 13 February 2014, http://dx.doi.org/10.1017/S0956792514000023. [Google Scholar]
  23. A. Münch, E. Zuazua. Numerical approximation of the null controls for the heat equation through transmutation. J. Inverse Problems 26(8) (2010), doi:10.1088/0266-5611/26/8/085018. [Google Scholar]
  24. R.E.A.C. Paley, N. Wiener. Fourier Transforms in Complex Domains. AMS Colloq. Publ., Vol. 19, Amer. Math. Soc., New-York, 1934. [Google Scholar]
  25. M. Tucsnak, G. Weiss. Observation and Control for Operator Semigroups. Birkhuser Advanced Texts, Springer, Basel, 2009. [Google Scholar]
  26. C.F. Weber. Analysis and solution of the ill-posed inverse heat conduction problem. Int. J. Heat Mass Transfer 24 (1981), 1783–92. [CrossRef] [Google Scholar]
  27. R.M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press, New-York, 1980. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.