Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 1 - 16
DOI https://doi.org/10.1051/mmnp/20149501
Published online 17 July 2014
  1. R. Adami, C. Cacciapuoti, D. Finco, D. Noja. Fast solitons on star graphs. Rev. Math. Phys, 23, 4 (2011), 409–451. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Adami, D. Noja. Existence of dynamics for a 1-d NLS equation in dimension one. J. Phys. A, 42, 49, 495302 (2009), 19pp. [Google Scholar]
  3. R. Adami, D. Noja. Stability and symmetry-breaking bifurcation for the Ground States of a NLS with a δ′ interaction. Commun. Math. Phys., 318 (2013), 247–289. [CrossRef] [Google Scholar]
  4. R. Adami, D. Noja, N. Visciglia. Constrained energy minimization and ground states for NLS with point defects. Disc. Cont. Dyn. Syst. B, 18 (2013), no. 5, 1155–1188. [CrossRef] [Google Scholar]
  5. S. Albeverio, Z. Brzeźniak, L. Dabrowski. Fundamental solutions of the Heat and Schrödinger Equations with point interaction. J. Func. An., 130 (1995), 220–254. [CrossRef] [Google Scholar]
  6. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden. Solvable Models in Quantum Mechanics. Springer-Verlag, New York, 1988. [Google Scholar]
  7. S. Albeverio, P. Kurasov. Singular Perturbations of Differential Operators. Cambridge University Press, 2000. [Google Scholar]
  8. D. Cao Xiang, A.B. Malomed. Soliton defect collisions in the nonlinear Schrödinger equation. Phys. Lett. A, 206 (1995), 177–182. [CrossRef] [Google Scholar]
  9. T. Cheon, T. Shigehara. Realizing discontinuous wave functions with renormalized short-range potentials. Phys. Lett. A, 243 (1998), 111–116. [CrossRef] [Google Scholar]
  10. P. Exner, S.S. Manko. Approximations of quantum-graph vertex couplings by singularly scaled rank-one operators. Lett. Math. Phys. (2014), to appear, arXiv:1310.5856. [Google Scholar]
  11. P. Exner, H. Neidhardt, V.A. Zagrebnov. Potential approximations to a δ′: an inverse Klauder phenomenon with norm-resolvent convergence. Commun. Math. Phys, 224 (2001), 593–612. [CrossRef] [Google Scholar]
  12. R. Fukuizumi, L. Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential. Disc. Cont. Dyn. Syst. (A), 21 (2008), 129–144. [Google Scholar]
  13. R. Fukuizumi, M. Ohta, T. Ozawa. Nonlinear Schrödinger equation with a point defect. Ann. Inst. H. Poincaré - AN, 25 (2008), 837–845. [CrossRef] [Google Scholar]
  14. R. Fukuizumi, A. Sacchetti. Bifurcation and stability for nonlinear Schrödinger equation with double well potential in the semiclassical limit. J. Stat. Phys, 145 (2011), 1546-1594. [Google Scholar]
  15. Yu.D. Golovaty, R.O. Hryniv. On norm resolvent convergence of Schrödinger operators with δ′-like potentials. J. Phys. A Math. Theor., 44 (2011), 049802; Corrigendum J. Phys. A Math. Theor. 44 (2011), 049802. [CrossRef] [Google Scholar]
  16. R.H. Goodman, P.J. Holmes, M.I. Weinstein. Strong NLS soliton-defect interactions. Physica D, 192 (2004), 215–248. [CrossRef] [Google Scholar]
  17. R.K. Jackson, M.I. Weinstein. Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation. J. Stat. Phys., 116 (2004), 881–905. [CrossRef] [Google Scholar]
  18. E. Kirr, P.G. Kevrekidis, D.E. Pelinovsky. Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. Commun. Math. Phys., 308 (2011), 795–844. [CrossRef] [Google Scholar]
  19. S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim, Y. Sivan. Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential. Physica D, 237 (2008), no. 8, 1103–1128. [CrossRef] [Google Scholar]
  20. D. Witthaut, S. Mossmann, H.J. Korsch. Bound and resonance states of the nonlinear Schrödinger equation in simple model systems. J. Phys. A, 38 (2005), 1777-1702. [CrossRef] [MathSciNet] [Google Scholar]
  21. V.E. Zakharov, A.B. Shabat. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl., 8 (1974), 226–235. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.