Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 17 - 38
DOI https://doi.org/10.1051/mmnp/20149502
Published online 17 July 2014
  1. R. Auscher, M.J. Carro. On relations between operators on ℝN, TN and ℤn. Studia Math., 101 (1992), no. 2, 165–182. [MathSciNet] [Google Scholar]
  2. Á. Bényi, K. Gröchenig, C. Heil, K. Okoudjou, Modulation spaces and a class of bounded multilinear pseudodifferential operators. J. Operator Theory, 54 (2005), 387–399. [MathSciNet] [Google Scholar]
  3. D. Bose, S. Madan, P. Mohanty, S. Shrivastava. Relations between bilinear multipliers on ℝn, Tn and ℤn. arXiv: 0903.4052v1 [math.CA], 24 Mar 2009. [Google Scholar]
  4. R.T. Carlos Andres. Lp-estimates for pseudo-differential operators on ℤn. J. Pseudo-Differ. Oper. Appl., 2 (2011), 367–375. [CrossRef] [MathSciNet] [Google Scholar]
  5. V. Catană, S. Molahajloo, M.W. Wong. Lp-boundedness of multilinear pseudo-differential operators. In Operator Theory: Advances and Applications. vol. 205, 167-180, Birhäuser Verlag, Basel, 2009. [Google Scholar]
  6. M. Charalambides, M. Christ. Near-extremizers of Young’s inequality for discrete groups. arXiv: 1112.3716v1 [math.CA], 16 Dec. 2011. [Google Scholar]
  7. L. Grafakos, R.H. Torres. Multilinear Calderon-Zygmund theory. Advances in Mathematics, 165 (2002), no. 1, 124–164. [CrossRef] [Google Scholar]
  8. L. Grafakos, P. Honzik. Maximal transferance and summability of multilinear Fourier series. J. Aust. Math. Soc., 80 (2006), no. 1, 65–80. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Grafakos. Classical Fourier Analysis. Second Edition, Springer, 2008. [Google Scholar]
  10. R.V. Kadison, J.R. Ringrose. Fundamentals of the Theory of Operator Algebras: Elementary Theory. Academic Press, 1983. [Google Scholar]
  11. S. Molahajloo, M.W. Wong. Pseudo-differential operators on S1. In Operator Theory: Advances and Applications, vol. 189, 297-306, Birhäuser Verlag, Basel, 2008. [Google Scholar]
  12. S. Molahajloo. Pseudo-differential operators on Z. In Operator Theory: Advances and Applications, vol. 205, 213–221, Birhäuser Verlag, Basel, 2009. [Google Scholar]
  13. M. Pirhayati. Spectral Theory of Pseudo-Differential Operators on S1. In Pseudo-Differential Operators: Analysis, Applications and Computations, Operator Theory: Advanced and Applications 213, Springer Basel AG 2011. [Google Scholar]
  14. M. Ruzhansky, V. Turunen. Quantization of pseudo-differential operators on the torus. J. Fourier Anal. Appl., 16 (2010), 943-982. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Ruzhansky, V. Turunen. Pseudo-Differential Operators and Symmetries. Birhäuser, 2010. [Google Scholar]
  16. M. Ruzhansky, V. Turunen. On the toriodal quantization of periodic pseudo-differential operators. Numerical Functional Analysis and Optimization, 30 (2009), 1098-1124. [Google Scholar]
  17. M.W. Wong. Discrete Fourier Analysis. Birhäuser, 2011. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.