Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 119 - 137
DOI https://doi.org/10.1051/mmnp/20149508
Published online 17 July 2014
  1. C.H. Appenzeller, C.H. Davies, W.A. Norton. Fragmentation of stratospheric intrusions. J. Geophys. Res., 101 (1996), 1435–1456. [Google Scholar]
  2. L. Armi. Effects of variation in eddy diffusivity on property distributions in the oceans. J. Mar. Res., 37 (1997), 515–530. [Google Scholar]
  3. P.G. Baines. Topographic Effects in Stratified Flows. CambridgeUniversity Press. 1971. [Google Scholar]
  4. P.G. Baines. On internal tide generation models. Deep Sea Res., 29 (1982), 307-338. [CrossRef] [Google Scholar]
  5. N.J. Balmforth, G.R. Ierley, W.R. Young. Tidal conversion by subcritical topography. J. Phys. Oceanogr., 32 (2002), 2900-2914. [CrossRef] [Google Scholar]
  6. T.H. Bell. Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67 (1975), 705–722. [CrossRef] [Google Scholar]
  7. R. Bedard, M. Previsic, G. Hagerman. North American Ocean Energy Status March 2007.Electric Power Research Institute (EPRI) Tidal Power (TP), Volume 8, G. 2007. [Google Scholar]
  8. G.D. Egbert, R. Ray. Signi cant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 2000. [Google Scholar]
  9. N. Fraser. Surfing an oil rig. Energy Rev., (1999), 20–4 February/March. [Google Scholar]
  10. C. Garrett. Mixing with latitude. Nature, 422 (2003), 477–478. [CrossRef] [PubMed] [Google Scholar]
  11. C. Garrett, P. MacCready, P.B. Rhines. Boundary mixing and arrested Ekman layers: Rotating, stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25 (1993), 291-323. [CrossRef] [Google Scholar]
  12. R. Grimshaw, N. Smyth. Resonant flow of a stratified fluid over topography. J. Fluid Mech., 169 (1986), 429–464. [CrossRef] [Google Scholar]
  13. A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press., A., 1983. [Google Scholar]
  14. R.N. Ibragimov. Generation of internal tides by an oscillating background flow along a corrugated slope. Physica Scripta, 78 (2008), 065801. [Google Scholar]
  15. R. Ibragimov, N. Yilmaz, A. Bakhtiyarov. Experimental mixing parameterization due to multiphase fluid-structure interaction. Mech. Res. Comm., 38 (2011), 261-266. [Google Scholar]
  16. R.N. Ibragimov. Nonlinear viscous fluid patterns in a thin rotating spherical domain and applications. Phys. Fluids, 23 (2011), 123102. [CrossRef] [Google Scholar]
  17. R.N. Ibragimov, V. Vatchev. Approximation of the Garrett-Munk internal wave spectrum. Phys. Let. A, 376 (2011), 94-101. [CrossRef] [Google Scholar]
  18. R.N. Ibragimov, G. Jefferson, J. Carminati. Invariant and approximately invariant solutions of non-linear internal gravity waves forming a column of stratified fluid affected the Earth’s rotation. Int. J. Non-Linear Mech., 51 (2013), 28-44. [CrossRef] [Google Scholar]
  19. J.C. Kaimal, J.J. Finnigan. Atmospheric Boundary Layer Flows. Their Structure and Measurement. Oxford University Press, 1994 London. [Google Scholar]
  20. L.H. Kantha, C.A. Clayson. Small Scale Processes in Geophysical Fluid Flows. New York, etc., Academic Press, International Geophysics Series, V. 67, 2000. [Google Scholar]
  21. S. Khatiwala. Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep See Res., I, 50 2003, 3-21. [Google Scholar]
  22. P.K. Kundu. Fluid Mechanics. Academic Press, Inc. 1990. [Google Scholar]
  23. E. Kunze, C. Garrett. Internal tide generation in the deep ocean. nnu. Rev. Fluid Mech, 39 (2007), 57-87. [CrossRef] [Google Scholar]
  24. F. Lam, L. Mass, T. Gerkema. Spatial structure of tidal and residual currents as observed over the shelf break in the Bay of Biscay. Deep-See Res., I, 51 (2004) 10751096. [Google Scholar]
  25. S. Legg, A. Adcroft. Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr., 33 (2003), 2224-2247. [CrossRef] [Google Scholar]
  26. S. Legg. Internal tides generated on a corrugated continental slope. Part 2: Along-slope barotropic forcing. J. Phys. Oceanogr., 34 (2004), no. 8, 1824-1838. [CrossRef] [Google Scholar]
  27. S.G. Llewellyn Smith, W.R. Young. Conversion of the barotropic tide. J. Phys.Oceanogr., 32 (2002), 1554-1566. [CrossRef] [MathSciNet] [Google Scholar]
  28. R.R. Long. Finite amplitude disturbances in the flow of inviscid rotating and stratified fluids over an obstacle. Annu. Rev. Fluid Mech., 4 (1972), 69–92. [CrossRef] [Google Scholar]
  29. P. MacCready, G. Pawlak. Stratified flow along a corrugated slope: Separation Drag and wave drag. J. Phys. Oceanogr., 31 (2001), 2824-2838. [CrossRef] [Google Scholar]
  30. J.W. Miles.Waves and wave drag in stratified flows. Applied Mechanics: Proc. 12th Int.Cong. Appl. Mech., Springer, 1969. [Google Scholar]
  31. P. Muller, A. Naratov. The internal wave action model (IWAM). Proceedings, Aha Huliko’a Hawaiian Winter Workshop, School of Ocean and Earth Science and Technology, Special Publication, 2003. [Google Scholar]
  32. W. Munk, C. Wunsch. Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res., 45 (1998), 1977-2010. [NASA ADS] [CrossRef] [Google Scholar]
  33. J.C. Nappo. An introduction to atmospheric gravity waves. Academic Press, San Diego, 2002. [Google Scholar]
  34. J.D. Nash, J.M. Moum. Internal hydraulic flows on the continental shelf: High drag states over a small bank. Geophys. Res., 106 (2001), 4593-4612. [CrossRef] [Google Scholar]
  35. G.T. Needler. Dispersion in the ocean by physical, geochemical and biological processes. Phil. Trans. R. Soc. London A 319 (1986), 177-187. [CrossRef] [Google Scholar]
  36. K.L. Polzin, J.M. Toole, J.R. Ledwell. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 (1997), 93-96. [CrossRef] [PubMed] [Google Scholar]
  37. P. Queney. The problem of air flow over mountains: A summary of theoretical studies. Bull. Am. Meteorol. Soc. 29, 1948. [Google Scholar]
  38. R.S. Scorer. Environmental Aerodynamics, Halsted Press, N.-Y., 1978. [Google Scholar]
  39. S.A. Thorpe. The cross-slope transport of momentum by internal waves generated by alongslope currents over topography. J. Phys. Oceanogr., 26 (1996), 191-204. [CrossRef] [Google Scholar]
  40. S.A. Thorpe. The generation of internal waves by flow over rough topography of continental slope. Proc. Roy. Soc. London A, 493 (1992), 115-130. [CrossRef] [Google Scholar]
  41. J.H. Trowbridge, S.J. Lentz. Asymmetric behavior of an oceanic boundary layer above a sloping bottom. J. Pjys. Oceanogr., 21 (1991), 1171-1185. [CrossRef] [Google Scholar]
  42. U.S. Department of Energy, 2009: Wind & Hydropower Technologies Program. http://www1.eere.energy.gov/windandhydro/hydrokinetic/. Accessed April 2009. [Google Scholar]
  43. G.N. Watson. A Treatise on the Theory of Bessel Functions. 2nd ed., Cambridge University Press, 1966. [Google Scholar]
  44. C. Wunsch, R. Ferrari. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 (2004), 281-314. [CrossRef] [Google Scholar]
  45. M.G. Wurtele, R.D. Sharman, A. Datta. Atmospheric lee waves”. Annu. Rev. Fluid Mech., 28 (1996), 429-476. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.