Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 111 - 118
Published online 17 July 2014
  1. R.F. Anderson, S. Ali, L.L. Brandtmiller, S.H.H. Nielsen, M.Q. Fleisher. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 323 (2006), 1443-1448. [Google Scholar]
  2. R.D. Smith, M.E. Maltrud, F.O. Bryan, M.W. Hecht. Numerical Simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30 (2000), 1532–1561. [CrossRef] [Google Scholar]
  3. R.N. Ibragimov. Nonlinear viscous fluid patterns in a thin rotating spherical domain and applications. Phys. Fluids, 23 (2010), 123102. [Google Scholar]
  4. R.N. Ibragimov, N.H. Ibragimov. Rotationally symmetric internal gravity waves. Int. J. Nonlinear Mech. 47, (2012) 46-52. [CrossRef] [Google Scholar]
  5. R.N. Ibragimov. Generation of internal tides by an oscillating background flow along a corrugated slope. Phys. Scripta, 78, 065801. [Google Scholar]
  6. M.E. Maltrud, R. D. Smith, A. J. Semtner, R. C. Malone. Global Eddy-Resolving Ocean Simulations Driven by 1985–1994 Atmospheric Winds. J.Geophys. Res., 102 (1998), 25203–25226. [Google Scholar]
  7. R.N. Ibragimov. Free boundary effects on stability of two phase planar fluid motion in annulus: Migration of the stable mode. Comm. Nonlinear Sci. Numer. Simulat. 15 (2010), no. 9, 2361-2374. [CrossRef] [Google Scholar]
  8. J. Frederiksen, P. Webster. Alternative Theories of Atmospheric Teleconnections and Low-Frequency Fluctuations. Rev. Geopphys. 26 (1998), no. 3, 459-494. [Google Scholar]
  9. R.N. Ibragimov, D.E. Pelinovsky. Incompressible viscous flows in a thin spherical shell. J. Math. Fluid Mech., 11 (2009), 60-90. [CrossRef] [MathSciNet] [Google Scholar]
  10. N.H. Ibragimov, R.N. Ibragimov. Integration by quadratures of the nonlinear Euler equations modeling atmospheric flows in a thin rotating spherical shell. Phys. Lett. A., 375 (2011), 3858-3865. [CrossRef] [Google Scholar]
  11. R.N. Ibragimov, M. Dameron, C. Dannangoda. Sources and sinks of energy balance for nonlinear atmospheric motion perturbed by west-to-east winds progressing on a surface of rotating spherical shell. Discontinuity, Nonlinearity and Complexity, 1 (2012), no. 1, 41-55. [Google Scholar]
  12. I. Held. 1978: The vertical scale of an unstable baroclinic wave and its importance for eddy heat flux parametrisations. J. Atmos. Sci., 35 (1978), 572-576. [CrossRef] [Google Scholar]
  13. N.H. Ibragimov. Nonlinear self-adjointness in constructing conservation laws. Archives of ALGA 7/8, 1-99. See also arXiv:1109.1728v1[math-ph], 2011, 1-104. [Google Scholar]
  14. A.M. Araslanov, L.R. Galiakberova, N.H. Ibragimov, R.H. Ibragimov. Conserved vectors for a model of nonlinear atmospheric flows around the rotating spherical surface. Math. Model. Natur. Phenom., 8 (2013), no. 1, 32-48. [Google Scholar]
  15. W.K. Dewar. On “too fast” baroclinic planetary waves in the general circulation. J. Phys. Oceanogr., 29 (1998), 500-511. [Google Scholar]
  16. R.N. Ibragimov, G. Jefferson, J. Carminati. Explicit invariant solutions associated with nonlinear atmospheric flows in a thin rotating spherical shell with and without west-to-east jets perturbations. Spinger: Anal. Math. Phys., 3 (2013), no. 3, 201-294. [Google Scholar]
  17. N.H. Ibragimov, R.N. Ibragimov. Nonlinear whirlpools versus harmonic waves in a rotating column of stratified fluid. Math. Model. Nat. Phenom., 8 (2013), no. 1, 32-14. [Google Scholar]
  18. R.N. Ibragimov, M. Dameron. Spinning phenomena and energetics of spherically pulsating patterns in stratified fluids. Phys. Scripta 84, 2011 015402. [Google Scholar]
  19. A.J. Simmons, B.J. Hoskins. Baroclinic instability on the sphere: Normal modes of the primitive and quasi-geostrophic equations. J. Atmos. Sci., 33 (1975), 1454–1477. [CrossRef] [Google Scholar]
  20. J. Pedlosky. Geophysical Fluid Dynamics. Springer-Verlag, Second Edition, (1986). [Google Scholar]
  21. N.H. Ibragimov, R.N. Ibragimov. Applications of Lie Group analysis to mathematical modeling in natural sciences”. Math. Model. Nat. Phenom., 7 (2012), no. 2, 52-65. [CrossRef] [EDP Sciences] [Google Scholar]
  22. R.N. Ibragimov. Mechanism of energy transfers to smaller scales within the rotational internal wave field. Springer: Math. Phys. Anal. Geom., 13 (2010), no. 4, 331-355. [Google Scholar]
  23. R.N. Ibragimov. Shallow water theory and solution of the problem on the atmospheric motion around a celestial body. Phys. Scripta., 61 (2000), 391-395. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.