Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 83 - 110
Published online 17 July 2014
  1. C. de Boor, K. Höllig, S. Riemenschneider. Box splines. Series in Appl. Math. Sci. vol. 98. Springer-Verlag, New York, 1993. [Google Scholar]
  2. C. K. Chui. An introduction to wavelets. Academic Press, Inc., Boston, MA, 1992. [Google Scholar]
  3. C. K. Chui, W. J. He, J. Stöckler. Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmon. Anal., 13 (2002), 224–262. [CrossRef] [Google Scholar]
  4. I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Series, 61, SIAM, Philadelphia, 1992. [Google Scholar]
  5. I. Daubechies, B. Han. Pairs of dual wavelet frames from any two refinable functions. Constr. Approx., 20 (2004), 325–352. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Daubechies, B. Han, A. Ron, Z. Shen. Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal., 14 (2003), 1–46. [Google Scholar]
  7. M. Ehler. On multivariate compactly supported bi-frames. J. Fourier Anal. Appl., 13 (2007), 511–532. [CrossRef] [Google Scholar]
  8. B. Han. Properties of discrete framelet transforms. Math. Model. Nat. Phenom., 8 (2013), 18–47. [CrossRef] [EDP Sciences] [Google Scholar]
  9. B. Han. Nonhomgeneous wavelet systems in high dimensions. Appl. Comput. Harmon. Anal., 32 (2012), 169–196. [CrossRef] [Google Scholar]
  10. B. Han. Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. Appl. Comput. Harmon. Anal., 29 (2010), 330–353. [CrossRef] [Google Scholar]
  11. B. Han. Construction of wavelets and framelets by the projection method. Int. J. Appl. Math. Appl., 1 (2008), 1–40. [Google Scholar]
  12. B. Han. The projection method in wavelet analysis. in Splines and Wavelets: Athens 2005, G. Chen and M.J. Lai eds., (2006), 202–225. [Google Scholar]
  13. B. Han. Symmetric multivariate orthogonal refinable functions. Appl. Comput. Harmon. Anal., 17 (2004), 277–292. [CrossRef] [Google Scholar]
  14. B. Han. Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl., 24 (2003), 693–714. [CrossRef] [MathSciNet] [Google Scholar]
  15. B. Han. Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx. Theory, 124 (2003), 44–88. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. Han. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J. Comput. Appl. Math., 155 (2003), 43–67. [CrossRef] [Google Scholar]
  17. B. Han. Projectable multivariate refinable functions and biorthogonal wavelets. Appl. Comput. Harmon. Anal., 13 (2002), 89–102. [CrossRef] [Google Scholar]
  18. B. Han. Symmetry property and construction of wavelets with a general dilation matrix. Linear Algebra Appl., 353, (2002), 207–225. [CrossRef] [Google Scholar]
  19. B. Han. Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory, 110 (2001), 18–53. [CrossRef] [MathSciNet] [Google Scholar]
  20. B. Han. Analysis and construction of optimal multivariate biorthogonal wavelets with compact support. SIAM J. Math. Anal., 31 (2000), 274–304. [CrossRef] [Google Scholar]
  21. B. Han. On dual wavelet tight frames. Appl. Comput. Harmon. Anal., 4 (1997), 380–413. [CrossRef] [Google Scholar]
  22. B. Han. Wavelets. M.Sc. thesis at the Institute of Mathematics, Chinese Academy of Sciences, China, 1994. [Google Scholar]
  23. B. Han, R. Q. Jia. Optimal C2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils. Math. Comp., 75 (2006), 1287–1308. [CrossRef] [MathSciNet] [Google Scholar]
  24. B. Han, R. Q. Jia. Optimal interpolatory subdivision schemes in multidimensional spaces. SIAM J. Numer. Anal., 36, (1998), 105–124. [CrossRef] [Google Scholar]
  25. B. Han, Q. Mo. Analysis of optimal bivariate refinable Hermite interpolants. Commun. Pure Appl. Anal., 6 (2007), 689–718. [CrossRef] [MathSciNet] [Google Scholar]
  26. R. Q. Jia. Approximation properties of multivariate wavelets. Math. Comp., 67 (1998), 647–665. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. J. Lai, J. Stöckler. Construction of multivariate compactly supported tight wavelet frames. Appl. Comput. Harmon. Anal., 21 (2006), 324–348. [CrossRef] [Google Scholar]
  28. J. Liao. New interpolatory subdivision schemes in computer graphics. M.Sc. thesis at the University of Alberta, Canada, 2004. [Google Scholar]
  29. Y. Meyer. Wavelets and operators. Cambridge University Press, Cambridge, 1992. [Google Scholar]
  30. A. Ron, Z. Shen. Affine systems in L2(ℝd): the analysis of the analysis operator. J. Funct. Anal., 148 (1997), 408–447. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.