Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 148 - 169
Published online 17 July 2014
  1. J. Bourgain. Hausdorff dimension and distance sets. Israel J. Math., 87 (1994), no. 1-3, 193-201. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Erdogan. A bilinear Fourier extension theorem and applications to the distance set problem. Int. Math. Res. Not., (2005), no. 23, 1411-1425. [CrossRef] [Google Scholar]
  3. K.J. Falconer. On the Hausdorff dimensions of distance sets. Mathematika, 32 (1985), no. 2, 206-212. [CrossRef] [MathSciNet] [Google Scholar]
  4. K.J. Falconer. The geometry of fractal sets. Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, 1986. xiv+162 pp. [Google Scholar]
  5. A. Iosevich, A., I. Łaba. K -distance sets, Falconer conjecture, and discrete analogs. Integers, 5 (2005), no. 2, A8, 11 pp. [Google Scholar]
  6. N.H. Katz, T. Tao. Bounds on arithmetic projections, and applications to the Kakeya conjecture. Math. Res. Lett. , 6 (1999), no. 5-6, 625-630. [CrossRef] [MathSciNet] [Google Scholar]
  7. N.H. Katz, G. Tardos. A new entropy inequality for the Erdös distance problem. Towards a theory of geometric graphs, 119-126, Contemp. Math., 342, Amer. Math. Soc., Providence, RI, 2004. [Google Scholar]
  8. N.S. Landkof. Foundations of modern potential theory. Translated from the Russian by A. P. Doohovskoy. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972. x+424 pp. [Google Scholar]
  9. P. Mattila. Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets. Mathematika, 34 (1987), no. 2, 207-228. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Mattila. Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. xii+343 pp. [Google Scholar]
  11. J. Pach, P.K. Agarwal. Combinatorial geometry. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995. xiv+354 pp. [Google Scholar]
  12. T. Ransford. Potential theory in the complex plane. London Mathematical Society Student Texts, 28. Cambridge University Press, Cambridge, 1995. x+232 pp. [Google Scholar]
  13. J. Solymosi, Cs. D. Tóth. Distinct distances in the plane. The Micha Sharir birthday issue. Discrete Comput. Geom., 25 (2001), no. 4, 629-634. [CrossRef] [Google Scholar]
  14. J. Solymosi, V. Vu. Near optimal bound for the distinct distances problem in high dimensions. Combinatorica , 28 (2008), no. 1, 113-125. [CrossRef] [MathSciNet] [Google Scholar]
  15. T. Wolff. Decay of circular means of Fourier transforms of measures. Internat. Math. Res. Notices, (1999), no. 10, 547-567. [CrossRef] [Google Scholar]
  16. L. Guth, N. Katz. On the Erdös distinct distance problem in the plane. Preprint, 2011. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.