Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 270 - 281
Published online 17 July 2014
  1. M. Aizenman, S. Molchanov. Localization at large disorder and at extreme energies: an elementary derivation. Comm. Math. Phys., 157 (1993), 245–278. [Google Scholar]
  2. M. Aizenman, J. Schenker, R. Friedrich, D. Hundertmark. Finite-volume fractional moment criteria for Anderson localization. Commun. Math. Phys., 224 (2001), 219–253. [CrossRef] [Google Scholar]
  3. P.W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109 (1958), 1492–1505. [NASA ADS] [CrossRef] [Google Scholar]
  4. J. Bellissard, P. Hislop, G. Stolz. Correlation estimates in the Anderson model. J. Stat. Phys., 129 (2007), no. 4, 649–662. [CrossRef] [Google Scholar]
  5. J. Bourgain, C. Kenig. On localization in the continuous Anderson-Bernoulli model in higher dimension. Invent. Math., 161 (2005), 389–426. [CrossRef] [MathSciNet] [Google Scholar]
  6. J-M. Combes, F. Germinet, A. Klein. Generalized eigenvalue-counting estimates for the Anderson model. J. Stat. Phys., 135 (2009), no. 2, 201–216. [CrossRef] [Google Scholar]
  7. M.J. Cantero, L. Moral, L. Velázquez. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl., 362 (2003), 29–56. [CrossRef] [Google Scholar]
  8. R. del Rio, S. Jitomirskaya, Y. Last, B. Simon. What is localization? Phys. Rev. Lett., 75 (1995), 117–119. [CrossRef] [PubMed] [Google Scholar]
  9. F.J. Dyson. Statistical theory of the energy levels of complex systems. I, II, and III. J. Math. Phys., 3 (1962), 140–156, 157–165, and 166–175. [Google Scholar]
  10. P.J. Forrester. Log-gases and Random matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, Princeton, NJ, 2010. [Google Scholar]
  11. J. Fröhlich, T. Spencer. Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Comm. Math. Phys., 88 (1983), no. 2, 151–184. [CrossRef] [MathSciNet] [Google Scholar]
  12. K. Gittins, N. Peyerimhoff, M. Stoiciu, D. Wirosoetis. Some spectral applications of McMullen’s Hausdorff dimension algorithm. Conform. Geom. Dyn., 16 (2012), 184–203. [CrossRef] [MathSciNet] [Google Scholar]
  13. I. Ja. Goldsheid, S.A. Molchanov, L.A. Pastur. A random homogeneous Schrödinger operator has a pure point spectrum. Funkcional. Anal. i Priložen., 11 (1977), no. 1, 1–10, 96. [Google Scholar]
  14. G.M. Graf, A. Vaghi. A remark on the estimate of a determinant by Minami. Lett. Math. Phys., 79 (2007), no. 1, 17–22. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Klein, O. Lenoble, P. Müller. On Mott’s formula for the ac-conductivity in the Anderson model. Ann. of Math., 166 (2007), no. 2, 549–577. [CrossRef] [MathSciNet] [Google Scholar]
  16. R. Killip, I. Nenciu. Matrix models for circular ensembles. Int. Math. Res. Not. (2004), no. 50, 2665–2701. [CrossRef] [Google Scholar]
  17. R. Killip, M. Stoiciu. Eigenvalue Statistics for CMV Matrices: From Poisson to Clock via Random Matrix Ensembles. Duke Math. J., 146 (2009), no. 3, 361–399. [CrossRef] [MathSciNet] [Google Scholar]
  18. C.T. McMullen. Hausdorff dimension and conformal dynamics. III. Computation of dimension. Amer. J. Math., 120 (1998), no. 4, 691–721. [CrossRef] [MathSciNet] [Google Scholar]
  19. M.L. Mehta. Random matrices. Third Edition. Pure and Applied Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amsterdam, 2004. [Google Scholar]
  20. N. Minami. Local fluctuation of the spectrum of a multidimensional Anderson tight-binding model. Comm. Math. Phys., 177 (1996), 709–725. [CrossRef] [MathSciNet] [Google Scholar]
  21. S. Molchanov. Structure of the eigenfunctions of one-dimensional unordered structures. (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978), no. 1, 70–103, 214. [Google Scholar]
  22. S. Molchanov. The local structure of the spectrum of the one-dimensional Schrödinger operator. Comm. Math. Phys., 78 (1981), 429–446. [CrossRef] [Google Scholar]
  23. P.J. Nicholls. A measure on the limit set of a discrete group. In Ergodic theory, symbolic dynamics, and hyperbolic spaces. Edited by T. Bedford, M. Keane, C. Series. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991. [Google Scholar]
  24. S.J. Patterson. The limit set of a Fuchsian group. Acta Math., 136 (1976), no. 3-4, 241–273. [CrossRef] [MathSciNet] [Google Scholar]
  25. B. Simon. Orthogonal Polynomials on the Unit Circle, Vol. 1. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, Rhode Island, 2004. [Google Scholar]
  26. B. Simon. Orthogonal Polynomials on the Unit Circle, Vol. 2. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, Rhode Island, 2004. [Google Scholar]
  27. B. Simon. Fine structure of the zeros of orthogonal polynomials. I. A tale of two pictures. Electron. Trans. Numer. Anal., 25 (2006), 328–368 (electronic). [MathSciNet] [Google Scholar]
  28. B. Simon. CMV matrices: five years after. J. Comput. Appl. Math., 208 (2007), no. 1, 120–154. [CrossRef] [Google Scholar]
  29. M. Stoiciu. The statistical distribution of the zeros of random paraorthogonal polynomials on the unit circle. J. Approx. Theory, 139 (2006), 29–64. [CrossRef] [MathSciNet] [Google Scholar]
  30. M. Stoiciu. Poisson Statistics for Eigenvalues: From Random Schrödinger Operators to Random CMV Matrices. CRM Proceedings and Lecture Notes, volume 42 (2007), 465–475. [Google Scholar]
  31. D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math. No., 50 (1979), 171–202. [CrossRef] [Google Scholar]
  32. D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math., 153 (1984), no. 3-4, 259–277. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.