Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
|
|
---|---|---|
Page(s) | 282 - 294 | |
DOI | https://doi.org/10.1051/mmnp/20149519 | |
Published online | 17 July 2014 |
- B. M. Brown, I. Knowles, R. Weikard. On the inverse resonance problem. J. London Math. Soc., 68 (2003), no. 2, 383–401. [CrossRef] [MathSciNet] [Google Scholar]
- B. M. Brown, S. Naboko, R. Weikard. The inverse resonance problem for Jacobi operators. Bull. London Math. Soc., 37 (2005), no. 5, 727–737. [CrossRef] [MathSciNet] [Google Scholar]
- B. M. Brown, S. Naboko, R. Weikard. The inverse resonance problem for Hermite operators. Constr. Approx., 30 (2009), no. 2, 155–174. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bunse-Gerstner, L. Elsner. Schur parameter pencils for the solution of the unitary eigenproblem. Linear Algebra Appl., 154/156 (1991), 741–778. [CrossRef] [Google Scholar]
- M. J. Cantero, L. Moral, L. Velázquez. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl., 362 (2003), 29–56. [CrossRef] [Google Scholar]
- D. Damanik, B. Simon. Jost functions and Jost solutions for Jacobi matrices. II. Decay and analyticity. Int. Math. Res. Not. (2006), Art. ID 19396, 1–32. [Google Scholar]
- L. D. Faddeyev. The inverse problem in the quantum theory of scattering. J. Mathematical Phys., 4 (1963), 72–104. [Google Scholar]
- R. Froese. Asymptotic distribution of resonances in one dimension. J. Differential Equations, 137 (1997), no. 2, 251–272. [CrossRef] [MathSciNet] [Google Scholar]
- F. Gesztesy, M. Zinchenko. Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle. J. Approx. Theory, 139 (2006), no. 1-2, 172–213. [CrossRef] [MathSciNet] [Google Scholar]
- L.-S. Hahn, B. Epstein. Classical complex analysis. Jones & Bartlett Learning, 1996. [Google Scholar]
- M. Hitrik. Bounds on scattering poles in one dimension. Comm. Math. Phys., 208 (1999), no. 2, 381–411. [CrossRef] [MathSciNet] [Google Scholar]
- A. Iantchenko, E. Korotyaev. Periodic Jacobi operator with finitely supported perturbation on the half-lattice. Inverse Problems, 27 (2011), no. 11, 115003, 26. [CrossRef] [Google Scholar]
- A. Iantchenko, E. Korotyaev. Periodic Jacobi operator with finitely supported perturbations: the inverse resonance problem. J. Differential Equations, 252 (2012), no. 3, 2823–2844. [CrossRef] [MathSciNet] [Google Scholar]
- A. Iantchenko, E. Korotyaev. Resonances for periodic Jacobi operators with finitely supported perturbations. J. Math. Anal. Appl., 388 (2012), no. 2, 1239–1253. [CrossRef] [Google Scholar]
- E. Korotyaev. Inverse resonance scattering on the half line. Asymptot. Anal., 37 (2004), no. 3-4, 215–226. [MathSciNet] [Google Scholar]
- E. Korotyaev. Stability for inverse resonance problem. Int. Math. Res. Not. (2004), no. 73, 3927–3936. [CrossRef] [Google Scholar]
- E. Korotyaev. Inverse resonance scattering for Jacobi operators. Russ. J. Math. Phys., 18 (2011), no. 4, 427–439. [CrossRef] [MathSciNet] [Google Scholar]
- E. Korotyaev. Resonance theory for perturbed Hill operator. Asymptot. Anal., 74 (2011), no. 3-4, 199–227. [MathSciNet] [Google Scholar]
- M. Marletta, S. Naboko, R. Shterenberg, R. Weikard. On the inverse resonance problem for Jacobi operators – uniqueness and stability. J. Anal. Math., 117 (2012), 221–247. [CrossRef] [MathSciNet] [Google Scholar]
- M. Marletta, R. Shterenberg, R. Weikard. On the inverse resonance problem for Schrödinger operators. Comm. Math. Phys., 295 (2010), no. 2, 465–484. [CrossRef] [MathSciNet] [Google Scholar]
- M. Marletta, R. Weikard. Stability for the inverse resonance problem for a Jacobi operator with complex potential. Inverse Problems, 23 (2007), no. 4, 1677–1688. [CrossRef] [Google Scholar]
- R. Shterenberg, R. Weikard, M. Zinchenko. Stability for the inverse resonance problem for the CMV operator. Proc. Sympos. Pure Math., 87 (2013), 315–326. [Google Scholar]
- B. Simon. Resonances in one dimension and Fredholm determinants. J. Funct. Anal., 178 (2000), no. 2, 396–420. [CrossRef] [MathSciNet] [Google Scholar]
- B. Simon. Orthogonal polynomials on the unit circle: new results. Int. Math. Res. Not. (2004), no. 53, 2837–2880. [CrossRef] [Google Scholar]
- B. Simon. OPUC on one foot. Bull. Amer. Math. Soc. (N.S.), 42 (2005), no. 4, 431–460 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- B. Simon. Orthogonal polynomials on the unit circle. Part 1: Classical theory, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. [Google Scholar]
- B. Simon. Orthogonal polynomials on the unit circle. Part 2: Spectral theory, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. [Google Scholar]
- B. Simon. CMV matrices: five years after. J. Comput. Appl. Math., 208 (2007), no. 1, 120–154. [CrossRef] [Google Scholar]
- G. Teschl. Jacobi operators and completely integrable nonlinear lattices. Mathematical Surveys and Monographs, vol. 72, American Mathematical Society, Providence, RI, 2000. [Google Scholar]
- D. S. Watkins. Some perspectives on the eigenvalue problem. SIAM Rev., 35 (1993), no. 3, 430–471. [CrossRef] [MathSciNet] [Google Scholar]
- R. Weikard, M. Zinchenko. The inverse resonance problem for CMV operators. Inverse Problems, 26 (2010), no. 5, 55012–55021. [CrossRef] [Google Scholar]
- M. Zworski. Distribution of poles for scattering on the real line. J. Funct. Anal., 7 (1987), no. 2, 277–296. [CrossRef] [Google Scholar]
- M. Zworski. A remark on isopolar potentials. SIAM J. Math. Anal., 32 (2001), no. 6, 1324–1326 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.