Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 9, Number 6, 2014
Blood flows
|
|
---|---|---|
Page(s) | 17 - 33 | |
DOI | https://doi.org/10.1051/mmnp/20149603 | |
Published online | 31 July 2014 |
- M. Anand, K. Rajagopal, K.R. Rajagopal. A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med., 5 (2003), no. 3-4, 183-218. [Google Scholar]
- M. Anand, K. Rajagopal, K.R. Rajagopal. A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. Theor. Biol., 253 (2008), no. 4, 725-738. [Google Scholar]
- F.I. Ataullakhanov, V.I. Zarnitsina, A.V. Pokhilko, A.I. Lobanov, O.L. Morozova. Spatio-temporal dynamics of blood coagulation and pattern formation. A theoretical approach, Int. J. Bifurcat. Chaos., 12 (2002), no. 9, 1985-2002. [Google Scholar]
- N.A. Booth. Fibrinolysis and thrombosis. Baillière Clin. Haem., 12 (1999), no. 3, 423-433. [Google Scholar]
- S.D. Bungay, P.A. Gentry, R.D. Gentry. A mathematical model of lipid-mediated thrombin generation. Math. Med. Biol., 20 (2003), no. 1, 105-129. [Google Scholar]
- S. Butenas, K.G. Mann. Blood coagulation. Biochemistry-Moscow, 67 (2002), no. 1, 3-12. [Google Scholar]
- R.W. Colman, A.W. Clowes, J.N. George, J. Hirsh, V.J. Marder. Overview of Hemostasis, in Hemostasis and Thrombosis. 4th Edition, pp. 1-16, Editors: Colman R. W., Hirsh J., Marder V. J., Clowes A. W., and George J. N., Lippincott, Williams and Wilkins, 2001. [Google Scholar]
- C.M. Danforth, T. Orfeo, K.G. Mann, K.E. Brummel-Ziedins, S.J. Everse. The impact of uncertainty in a blood coagulation model. Math. Med. Biol., 26 (2009), no. 4, 323-336. [Google Scholar]
- B. Furie, B.C. Furie. Molecular basis of blood coagulation, in Hematology : Basic principles and practice. 3rd Edition, 1783-1804, Editors: Hoffman R., Benz E. J., Shattil S. J., Furie B., Cohen H. J., Silberstein L. E., and McGlave P., Churchill Livingstone, 2000. [Google Scholar]
- M.F. Hockin, K.C. Jones, S.J. Everse, K.G. Mann. A model for the stoichiometric regulation of blood coagulation. J. Biol. Chem., 277 (2002), no. 21, 18322-18333. [Google Scholar]
- M. Kalafatis, J.O. Egan, C. vant Veer, K.M. Cawthern, K.G. Mann. The regulation of clotting factors. Crit. Rev. Eukar. Gene, 7 (1997), no. 3, 241-280. [CrossRef] [Google Scholar]
- A.L. Karsan, J.M. Harlan. The blood vessel wall, in Hematology : Basic principles and practice. 3rd Edition, 1770-1782, Editors: Hoffman R., Benz E. J., Shattil S. J., Furie B., Cohen H. J., Silberstein L. E., and McGlave P., Churchill Livingstone, 2000. [Google Scholar]
- A.L. Kuharsky, A.F. Fogelson. Surface mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J., 80 (2001), no. 3, 1050-1094. [Google Scholar]
- D.E. Lacroix, M. Anand. A model for the formation, growth, and dissolution of clots in vitro. Effect of the intrinsic pathway on antithrombin III deficiency and protein C deficiency. Int. J. Adv. Eng. Sci. Appl. Math., 3 (2012), no. 1-4, 93-105. [Google Scholar]
- S.N. Levine. Enzyme amplifier kinetics. Science, 152 (1966), no. 3722, 651-653. [CrossRef] [PubMed] [Google Scholar]
- H.R. Lijnen, D. Collen. Molecular and cellular basis of fibrinolysis, in Hematology : Basic principles and practice , 3rd Edition, 1804-1814, Editors: Hoffman R., Benz E. J., Shattil S. J., Furie B., Cohen H. J., Silberstein L. E., and McGlave P., Churchill Livingstone, 2000. [Google Scholar]
- D. Luan, M. Zai, J.D. Varner. Computationally derived points of fragility of a human cascase are consistent with current therapeutic strategies. PLOS Comput. Biol., 3 (2007), no. 7, e142. [Google Scholar]
- K.G. Mann, D. Gaffney, E.G. Bovill. Molecular biology, biochemistry, and lifespan of plasma coagulation factors. in Williams Hematology , 5th Edition, 1205-1226, Editors: Beutler E., Lichtman M., Coller B. S., and Kipps T. J., McGraw Hill Inc., 1995. [Google Scholar]
- K.G. Mann, K. Brummel-Ziedins, T. Orfeo, S. Butenas. Models of blood coagulation. Blood Cell. Mol. Dis., 36 (2006), 108-117. [Google Scholar]
- T. Orfeo, S. Butenas, K.E. Brummel-Ziedins, K.G. Mann. The tissue factor requirement in blood coagulation. J. Biol. Chem., 280 (2005), no. 52, 42887-42896. [CrossRef] [PubMed] [Google Scholar]
- P.N. Paluri. Sensitivity analysis of a mathematical model for blood coagulation and fibrinolysis. Master’s thesis, Indian Institute of Technology Hyderabad , Yeddumailaram, AP, INDIA, 2012. [Google Scholar]
- M.A. Panteleev, M.V. Ovanesov, D.A. Kireev, A.M. Shibeko, E.I. Sinauridze, N.M. Ananyeva, A.A. Butylin, E.L. Saenko, F.I. Ataullakhanov. Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively. Biophys. J., 90 (2006), no. 5, 1489-1500. [Google Scholar]
- A. Sequeira, R.F. Santos, T. Bodnar. Blood Coagulation Dynamics: Mathematical modeling and stability results. Math. Biosci. Eng., 8 (2011), no. 2, 425-443. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Wells K. R., Blood Coagulation, http://health.yahoo.net/galecontent/blood-coagulation/2 Accessed May 10th 2012. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.