Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 6, 2014
Blood flows
Page(s) 34 - 45
DOI https://doi.org/10.1051/mmnp/20149604
Published online 31 July 2014
  1. M. Anand, K. Rajagopal, K.R. Rajagopal. A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. of Theoretical Medicine, 5 (2003), no. 3-4, 183-218. [Google Scholar]
  2. M. Anand, K. Rajagopal, K.R. Rajagopal. A model for the formation and lysis of blood clots. Pathophysiology Haemostasis Thrombosis, 34 (2005), 109–120. [Google Scholar]
  3. M. Anand, K. Rajagopal, K.R. Rajagopal. A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. of Theoretical Biology, 253 (2008), 725–738. [Google Scholar]
  4. M. Anand, K.R. Rajagopal. A shear-thinning viscoelastic fluid model for describing the flow of blood. Int. J. of Cardiovascular Medicine and Science, 4 (2004), no. 2, 59–68. [Google Scholar]
  5. M. Anand, K.R. Rajagopal. A mathematical model to describe the change in the constitutive character of blood due to platelet activation. C. R. Méchanique, 330 (2002), 557–562. [CrossRef] [Google Scholar]
  6. F.I. Ataullakhanov, V.I. Zarnitsina, A.V. Pokhilko, A.I. Lobanov, O.L. Morozova. A spatio-temporal dynamics of blood coagulation and pattern formation. A theoretical approach. International Journal of Bifurcation and Chaos, 12 (2002), no. 9, 1985–2002. [Google Scholar]
  7. T. Bodnár. On the use of non-linear TVD filters in finite-volume simulations. In: Algoritmy 2012, Proceedings of Contributed Papers and Posters, Slovak University of Technology, Faculty of Civil Engineering, Bratislava (2012), 190–199. [Google Scholar]
  8. T. Bodnár, J. Příhoda. Numerical simulation of turbulent free-surface flow in curved channel. Journal of Flow, Turbulence and Combustion, 76 (2006), no. 4, 429–442. [Google Scholar]
  9. T. Bodnár, K.R. Rajagopal, A. Sequeira. Simulation of the three-dimensional flow of blood using a shear-thinning viscoelastic fluid model. Mathematical Modelling of Natural Phenomena, 6 (2011), no. 5, 1–24. [Google Scholar]
  10. T. Bodnár, A. Sequeira. Numerical simulation of the coagulation dynamics of blood. Computational and Mathematical Methods in Medicine, 9 (2008), no. 2, 83–104. [CrossRef] [MathSciNet] [Google Scholar]
  11. T. Bodnár, A. Sequeira. Numerical Study of the Significance of the Non-Newtonian Nature of Blood in Steady Flow Through a Stenosed Vessel. In: Advances in Mathematical Fluid Mechanics. (edited by R. Rannacher & A. Sequeira), 83–104, Springer Verlag (2010). [Google Scholar]
  12. T. Bodnár, A. Sequeira, L. Pirkl. Numerical Simulations of Blood Flow in a Stenosed Vessel under Different Flow Rates using a Generalized Oldroyd - B Model. In: Numerical Analysis and Applied Mathematics, Vols 1 and 2. Melville, New York: American Institute of Physics, vol. 2 (2009), 645–648. [Google Scholar]
  13. T. Bodnár, A. Sequeira, M. Prosi. On the Shear-Thinning and Viscoelastic Effects of Blood Flow under Various Flow Rates. Applied Mathematics and Computation, 217 (2011), 5055–5067. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Butenas, K. G. Mann. Blood coagulation. Biochemistry (Moscow), 67 (2002), no. 1, 3–12. Translated from Biokhimiya, 67 (2002), no. 1, 5–15. [CrossRef] [Google Scholar]
  15. B. Engquist, P. Lötstedt, B. Sjögreen. Nonlinear filters for efficient shock computation. Mathematics of Computation, 52 (1989), no. 186, 509–537. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Fasano, R.F. Santos, A. Sequeira. Blood coagulation: a puzzle for biologists, a maze for mathematicians. In D. Ambrosi, A. Quarteroni, and G. Rozza (Eds.) Modeling of Physiological Flows. vol. 5, Modeling, Simulation & Applications, ch. 3 (2012) 41–75, Springer. [Google Scholar]
  17. G.P. Galdi, R. Rannacher, A. M. Robertson, S. Turek (Eds.) Hemodynamical Flows: Modeling, Analysis and Simulations. (Oberwolfach Seminars), (2008) Birkhäuser Verlag. [Google Scholar]
  18. A.M. Gambaruto, J. Janela, A. Moura, A. Sequeira. Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Mathematical Biosciences and Engineering, 8 (2011), no. 2, 409–423. [Google Scholar]
  19. A. Jameson. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In AIAA 10th Computational Fluid Dynamics Conference, Honolulu (1991). AIAA Paper 91–1596. [Google Scholar]
  20. A. Jameson, W. Schmidt, E. Turkel. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping scheme. In: AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto (1981), AIAA paper 81–1259. [Google Scholar]
  21. J. Janela, A. Moura, A. Sequeira. Absorbing boundary conditions for a 3D non- Newtonian fluid-structure interaction model for blood flow in arteries. International Journal of Engineering Science, 48 (2010), no. 11, 1332–1349. [CrossRef] [Google Scholar]
  22. R. Keslerová. Numerical study of effect of stress tensor for viscous and viscoelastic fluids flow. In: A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban J. Levesley, and M.V. Tretyakov (Eds.) Numerical Mathematics and Advanced Applications (2013), 529– 538. Springer. Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011. [Google Scholar]
  23. R. Keslerová, K. Kozel. Numerical solution of laminar incompressible generalized newtonian fluids flow. Applied Mathematics and Computation, 217 (2011), no. 11, 5125–5133. [CrossRef] [Google Scholar]
  24. A.L. Kuharsky, A.L. Fogelson. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophysical Journal, 80 (2001), 1050–1074. [Google Scholar]
  25. K.G. Mann, K. Brummel-Ziedins, T. Orfeo, S. Butenas. Models of blood coagulation. Blood Cells, Molecules, and Diseases, 36 (2006), 108–117. [CrossRef] [Google Scholar]
  26. L. Pirkl, T. Bodnár, K. Tuma. Viscoelastic fluid flows at moderate Weissenberg numbers using Oldroyd type model. In: AIP Conference Proceedings, vol. 1389 (2011), 102–105, American Institute of Physics. [Google Scholar]
  27. K.R. Rajagopal, A.R. Srinivasa. A thermodynamic frame work for rate type fluid models. Journal of Non-Newtonian Fluid Mechanics, 80 (2000), 207–227. [CrossRef] [Google Scholar]
  28. P. Riha, X. Wang, R. Liao, J.F. Stoltz. Elasticity and fracture strain of blood clots. Clinical Hemorheology and Microcirculation, 21 (1999), no. 1, 45–49. [PubMed] [Google Scholar]
  29. A.M. Robertson, A. Sequeira, M. Kameneva. Hemorheology. In: Hemodynamical Flows: Modelling, Analysis and Simulation, vol 37, (2008), 63–120, Birkhäuser . [Google Scholar]
  30. A.M. Robertson, A. Sequeira, R.G. Owens. Rheological models for blood. In:Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System (MS&A) (2009), 211–241, Springer-Verlag . [Google Scholar]
  31. A. Sequeira, R.F. Santos, T. Bodnár. Blood coagulation dynamics: Mathematical modeling and stability results. Mathematical Biosciences and Engineering, 8 (2011), no. 2, 425–443. [Google Scholar]
  32. W. Shyy, M.-H. Chen, R. Mittal, H.S. Udaykumar. On the suppression of numerical oscillations using a non-linear filter. Journal of Computational Physics, 102 (1992), 49–62. [CrossRef] [Google Scholar]
  33. V.I. Zarnitsina, A.V. Pokhilko, F. I. Ataullakhanov. A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation - I. The model description. Thrombosis Research, 84 (1996), no. 4, 225–236. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.