Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 6, 2014
Blood flows
Page(s) 85 - 97
Published online 31 July 2014
  1. N. V. Abakumov, S. I. Mukhin, A. P. Favorski, et al. Strategy of mathematical cardiovascular system modeling. Matem. Mod., 12 (2000), 106–117. [Google Scholar]
  2. L. Antiga. Patient-specific modeling of geometry and blood-flow in large arteries. PhD thesis. Politecnico di Milano, Milan, 2003. [Google Scholar]
  3. L. Antiga, D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Transactions on Medical Imaging, 23 (2004), 704–713. [CrossRef] [PubMed] [Google Scholar]
  4. K. T. Diedrich, J. A. Roberts, R. H. Schmidt, D. L. Parker. Comparing performance of centerline algorithms for quantitative assessment of brain vascular anatomy. Anat Rec (Hoboken), 295 (2012), 2179. [CrossRef] [PubMed] [Google Scholar]
  5. L. Formaggia, A. Quarteroni, A. Veneziani. Cardiovascular mathematics. DE: Springer, Heidelberg, 2009. [Google Scholar]
  6. V. Ganz, A. Hlavova, A. Fronek, J. Linhart, I. Prerovsky. Measurement of blood flow in the femoral artery in man at rest and during exercise by local thermodilution. Circulation, 30 (1964), 86–89. [CrossRef] [PubMed] [Google Scholar]
  7. S. Standring. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 40th ed., Elsevier, Churchill-Livingstone, 2008. [Google Scholar]
  8. J. Liu, K. Subramanian. Accurate and robust centerline extraction from tubular structures in medical images. In: Advances in Information and Intelligent Systems, part 2, Vol. 251, Springer Berlin Heidelberg, 2009, 139-162. [Google Scholar]
  9. L. O. Müller, C. Parés, E. F. Toro. Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties. J. Comp. Phys., 242 (2013), 53–85. [CrossRef] [Google Scholar]
  10. J. P. Mynard, P. Nithiarasu. A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Comm. Num. Met. Eng., 24 (2008), 367–417. [Google Scholar]
  11. C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed. The Mechanics of the circulation. Oxford University Press, Oxford, New York, 1978. [Google Scholar]
  12. R. Sala, C. Rossel, P. Encinas, P. Lahiguera. Continuum of pulse wave velocity from young elite athletes to uncontrolled older patients with resistant hypertension. J. Hypertens, 28 (2010), 19.216. [CrossRef] [PubMed] [Google Scholar]
  13. R. F. Schmidt, G. Thews. Human Physiology, vol.2, 2nd ed., MIR, Moscow, 1996 (In Russian). [Google Scholar]
  14. S. Simakov, T. Gamilov, Y.N. Soe. Computational study of blood flow in lower extremities under intense physical load. Russ. J. Numer. Anal. Math. Mod., 28 (2013), 485–504. [Google Scholar]
  15. S. Simakov, A. Kholodov. Computational study of oxygen concentration in human blood under low frequency disturbances. Mat. Mod. Comp. Sim., 1 (2009), 3–295. [Google Scholar]
  16. Y. Vassilevski, S. Simakov, S. Kapranov. A multi-model approach to intravenous filter optimization. Int. J. Numer. Meth. Biomed. Eng., 26 (2010), 915–925. [Google Scholar]
  17. Y. Vassilevski, S. Simakov, T. Dobroserdova. Numerical issues of modelling blood flow in networks of vessels with pathologies. Russ. J. Numer. Anal. Math. Mod., 26 (2011), 605–622. [Google Scholar]
  18. I. B. Wilkinson, J. R. Cockcroft, D. J. Webb. Pulse wave analysis and arterial stiffness. J. Cardiovasc. Pharmacol., 32 (1998), Suppl. 3, S33–7. [PubMed] [Google Scholar]
  19. [Google Scholar]
  20., [Google Scholar]
  21. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.