Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 6, 2014
Blood flows
Page(s) 69 - 84
Published online 31 July 2014
  1. D. Alizadehrad, Y. Imai, K. Nakaaki, T. Ishikawa, T. Yamaguchi. Parallel simulation of cellular flow in microvessels using a particle method. Journal of Biomechanical Science and Engineering, 7 (2012), no. 1, 57-71. [CrossRef] [Google Scholar]
  2. M.P. Allen, D.J. Tidesley. Computer Simulation of Liquids. Clarendon, Oxford, 1987. [Google Scholar]
  3. T. AlMomani, H.S. Udaykumar, J.S. Marshall, K.B. Chandran. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow. Annals of Biomedical Engineering, Vol. 36 (2008), no. 6, 905-920. [CrossRef] [PubMed] [Google Scholar]
  4. N. M. Bessonov, S.F. Golovashchenko, V.A. Volpert. Numerical Modelling of Contact Elastic-Plastic Flows. Math. Model. Nat. Phenom., Vol. 4 (2009), no. 1, 44-87. [Google Scholar]
  5. T. Bodnar, K. Rajagopal, A. Sequeira. Simulation of the Three-Dimensional Flow of Blood Using a Shear-Thinning Viscoelastic Fluid Model. Mathematical Modelling of Natural Phenomena, vol. 6 (2011), no. 5, 1-24. [Google Scholar]
  6. C. Bui, V. Lleras, O. Pantz. Dynamics of red blood cells in 2d. ESAIM: Proc., Vol. 28 (2009), 182-194. [CrossRef] [EDP Sciences] [Google Scholar]
  7. L.M. Crowl, A.L. Fogelson. Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int j numer method biomed eng., 26 (2010), no. 3-4, 471-487. [Google Scholar]
  8. M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, L.L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Physical Review E 75, 066707, 2007. [Google Scholar]
  9. W. Dzwinel, K. Boryczko, D.A. Yuen. Modeling Mesoscopic Fluids with Discrete-Particles Methods. Algorithms and Results., In: Spasic AM, Hsu JP (eds) Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering. Taylor & Francis, CRC Press, 715-778. [Google Scholar]
  10. D. Fedosov, B. Caswell, G.E. Karniadakis. General coarse-grained red blood cell models: I. Mechanics. (2009), arXiv:0905.0042 [q-bio.CB]. [Google Scholar]
  11. D. Fedosov, B. Caswell, G.E. Karniadakis. A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics. Biophysical Journal, Volume 98 (2010), 2215-2225. [CrossRef] [PubMed] [Google Scholar]
  12. D.A. Fedosov. Multiscale Modeling of Blood Flow and Soft Matter. PhD dissertation at Brown University, (2010). [Google Scholar]
  13. D.A. Fedosov, H. Lei, B. Caswell, S. Suresh, G.E. Karniadakis. Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria. PLoS Computational Biology, Vol. 7 (2011), no. 12, e1002270. [CrossRef] [PubMed] [Google Scholar]
  14. D.A. Fedosov, I.V. Pivkin, G.E. Karniadakis. Velocity limit in DPD simulations of wall-bounded flows. J. Comp. Phys., 227 (2008), 2540-2559. [Google Scholar]
  15. H.L. Goldsmith, V.T. Turitto. Rheological aspects of thrombosis and haemostasis: basic principles and applications. Thrombosis and Haemostasis, 55 (1986), no. 3, 415-435. [PubMed] [Google Scholar]
  16. R.D. Groot, P.B. Warren. Dissipative particle dynamics: Bridging the Gap Between Atomistic and Mesoscopic Simulation. J. Chem. Phys., 107 (1997), no. 11, 4423–4435. [CrossRef] [Google Scholar]
  17. S.M. Hosseini, J.J. Feng. A particle-based model for the transport of erythrocytes in capillaries. Chem. Eng. Sci. 64, (2009) 4488-4497. [CrossRef] [Google Scholar]
  18. Y. Imai, H. Kondo, T. Ishikawa, C.T. Lim, T. Yamaguchi. Modeling of hemodynamics arising from malaria infection. Journal of Biomechanics, (2010), no. 43, 1386-1393. [Google Scholar]
  19. Y. Imai, K. Nakaaki, H. Kondo, T. Ishikawa, C.T. Lim, T. Yamaguchi. Margination of red blood cells infected by Plasmodium falciparum in a microvessel. Journal of Biomechanics, (2011), no. 44, 1553-1558. [CrossRef] [PubMed] [Google Scholar]
  20. M. Karttunen, I. Vattulainen, A. Lukkarinen. A novel methods in soft matter simulations. Springer, Berlin, 2004. [Google Scholar]
  21. J.F. Koleski, E.C. Eckstein. Near wall concentration profiles of 1.0 and 2.5 um beads during flow of blood suspensions. Trans. Ann. Soc. Intern. Organs, 37 (1991), 9-12. [CrossRef] [Google Scholar]
  22. P.W. Kuchel, E.D. Fackerell. Parametric-Equation Representation of Biconcave Erythrocytes. Bulletin of Mathematical Biology, 61 (1999), 209-220. [CrossRef] [PubMed] [Google Scholar]
  23. M. B. Lawrence, T. A. Springer. Leukocytes roll on a selectin at physiological flow rates: distinction from and prerequisite for adhesion through integrins. Cell, 65 (1991), 859-873. [CrossRef] [PubMed] [Google Scholar]
  24. R.C. Leif, J. Vinograd. The Distribution of Buoyant Density of Human Erythrocytes in Bovine Albumin Solutions. Proc Natl Acad Sci U S A., 51 (1964), no. 3, 520-528. [CrossRef] [PubMed] [Google Scholar]
  25. S. Leibler, A.C. Maggs. Simulation of shape changes and adhesion phenomena in an elastic model of erythrocytes. Proc. Natl. Acad. Sci. USA, vol. 87 (1990), 6433-6435. [CrossRef] [Google Scholar]
  26. L. Lopez, I.M. Duck, W.A. Hunt. On the shape of the erythrocyte. Biophys J., 8 (1968), no. 11, 1228-1235. [Google Scholar]
  27. J.L. McWhirter, H. Noguchi, G. Gompper. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. PNAS, vol. 106 (2009), no. 15, 6039-6043. [CrossRef] [Google Scholar]
  28. N. Mohandas, P.G. Gallagher. Red cell membrane: past, present, and future. Blood, 112 (2008), 3939-48. [CrossRef] [PubMed] [Google Scholar]
  29. L.L. Munn, M.M. Dupin, Blood Cell Interactions and Segregation in Flow. Annals of Biomedical Engineering, Vol. 36 (2008), no. 4, 534-544. [CrossRef] [PubMed] [Google Scholar]
  30. S. Muñoz San Martín, J.L. Sebastián, M. Sancho1, G. Álvarez. Modeling Human Erythrocyte Shape and Size Abnormalities, arXiv:q-bio/0507024 [q-bio.QM], 14 Jul 2005. [Google Scholar]
  31. H. Noguchi, G. Gompper. Shape transitions of fluid vesicles and red blood cells in capillary flows. PNAS, vol. 102 (2005), no. 40, 14159-14164. [Google Scholar]
  32. D. Obrist, B. Weber, A. Buck, P. Jenny. Red blood cell distribution in simplified capillary networks. Phil. Trans. R. Soc. A 2010 368, doi: 10.1098/rsta.2010.0045, 2010. [Google Scholar]
  33. D. Pinho, A. Pereira, R. Lima, T. Ishikawa, Y. Imai, T. Yamaguchi. Red blood cell dispersion in 100 μm glass capillaries: the temperature effect. C.T. Lim and J.C.H. Goh (Eds.), WCB 2010, IFMBE Proceedings, 31 (2010), 1067–1070. [Google Scholar]
  34. E. Pinto, B. Taboada, R. Rodrigues, V. Faustino, A. Pereira, R. Lima. Cell-free layer (CFL) analysis in a polydimethysiloxane (PDMS) microchannel: a global approach. WebmedCentral Biomedical Engineering, 4 (2013), no.8, WMC004374. [Google Scholar]
  35. I.V. Pivkin, G.E. Karniadakis. Accurate Coarse-Grained Modeling of Red Blood Cells. Physical review letters, PRL 101 (2008) 118105. [Google Scholar]
  36. C. Pozrikidis. Modeling and Simulation of Capsules and Biological Cells. by Chapman & Hall/CRC, ISBN (2003) 1-58488-359-6. [Google Scholar]
  37. U.D. Schiller. Dissipative Particle Dynamics. A Study of the Methodological Background. Diploma thesis at Faculty of Physics University of Bielefeld, 2005. [Google Scholar]
  38. A.A. Tokarev, A.A. Butylin, E.A. Ermakova, E.E. Shnol, G.P. Panasenko, F.I. Ataullakhanov. Finite Platelet Size Could Be Responsible for Platelet Margination Effect. Biophysical Journal, Vol. 101 (2011), 1835-1843. [Google Scholar]
  39. A. Tosenberger, V. Salnikov, N. Bessonov, E. Babushkina, V. Volpert. Particle Dynamics Methods of Blood Flow Simulations. Math. Model. Nat. Phenom., 6 (2011), no. 5, 320–332. [CrossRef] [EDP Sciences] [Google Scholar]
  40. K. Tsubota, S. Wada. Elastic force of red blood cell membrane during tank-treading motion: Consideration of the membraneâ’s natural state. International Journal of Mechanical Sciences, 52 (2010), 356-364. [CrossRef] [Google Scholar]
  41. K. Tsubota, S. Wada, H. Kamada, Y. Kitagawa, R. Lima, T. Yamaguchi. A Particle Method for Blood Flow Simulation, Application to Flowing Red Blood Cells and Platelets. Journal of the Earth Simulator, vol. 5 (2006), 2-7. [Google Scholar]
  42. C. Yeh, A.C. Calvez, E.C. Eckstein. An estimated shape function for drift in a platelet-transport model. Biophysical journal, vol. 67 (1994), 1252-1259. [Google Scholar]
  43. C. Yeh, E.C. Eckstein. Transient Lateral Transport of Platelet-Sized Particles in Flowing Blood Suspensions. Biophysical journal, vol. 66 (1994), 1706-1716. [Google Scholar]
  44. J. Zhang, P.C. Johnson, A.S. Popel. Effects of Erythrocyte Deformability and Aggregation on the Cell Free Layer and Apparent Viscosity of Microscopic Blood Flows. Microvasc Res., 77 (2009), no. 3, 265-272. [Google Scholar]
  45. P. Bagchi. Mesoscale simulation of blood flow in small vessels. Biophysical Journal, 92 (2007), no. 6, 1858-1877 [PubMed: 17208982]. [Google Scholar]
  46. R. Skalak, A. Tozeren, R. Zarda, S. Chein. Strain energy function of red blood cell membranes. Biophysical Journal 13 (1973), no. 3, 245-264 [PubMed: 4697236]. [Google Scholar]
  47. A.A. Tokarev, A.A. Butylin, F.I. Ataullakhanov. Platelet Adhesion from Shear Blood Flow Is Controlled by Near-Wall Rebounding Collisions with Erythrocytes. Biophys. J., 100 (2011), no. 4, 799-808. [CrossRef] [PubMed] [Google Scholar]
  48. A.A. Tokarev, A.A. Butylin, F.I. Ataullakhanov. Platelet transport and adhesion in shear blood flow: the role of erythrocytes. Computer Research and Modeling, 4 (2012), no. 1, 185-200 [article in Russian]. [Google Scholar]
  49. S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, T. Seufferlein. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia, 1 (2005), 15-30. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.