Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 1, 2015
Hybrid models
Page(s) 4 - 35
Published online 12 December 2014
  1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell, 4th ed. Garland Science, New York, 2002. [Google Scholar]
  2. A. R. A. Anderson, M. A. J. Chaplain, K. A. Rejniak, Eds. Single-cell-based models in biology and medicine. Birkäuser, Boston, 2007. [Google Scholar]
  3. A. R. A. Anderson, A. M. Weaver, P. T. Cummings, V. Quaranta. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127 (2006), 905–915. [CrossRef] [PubMed] [Google Scholar]
  4. N. Bellomo, B. Piccoli, A. Tosin. Modeling crowd dynamics from a complex system viewpoint. Math. Methods Appl. Sci., 22 (2012), 1230004. [CrossRef] [Google Scholar]
  5. K. Böttger, H. Hatzikirou, A. Chauviere, A. Deutsch. Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion. Math. Model. Nat. Phenom., 7 (2012), 105–135. [CrossRef] [EDP Sciences] [Google Scholar]
  6. F. Bussolino, M. Arese, E. Audero, E. Giraudo, S. Marchio, S. Mitola, L. Primo, G. Serini, 2003. Biological aspects in tumor angiogenesis. In Preziosi, L., Ed., Cancer modeling and simulation, Mathematical Biology and Medicine Sciences, Chapman and Hall/CRC, 1–16. [Google Scholar]
  7. V. Capasso and D. Morale. Stochastic modelling of tumour-induced angiogenesis. J. Math. Biol., 58 (2009), 219–233. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. V. Capasso and D. Morale. Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions, Stoch. Anal. Appl., 27 (2009), 574–603. [CrossRef] [Google Scholar]
  9. P. Carmeliet, R. K. Jain. Angiogenesis in cancer and other diseases. Nature, 407 (2000), 249–257. [CrossRef] [PubMed] [Google Scholar]
  10. P. Carmeliet. Angiogenesis in life, disease and medicine. Nature, 438 (2005), 932–936. [CrossRef] [PubMed] [Google Scholar]
  11. J. A. Carrillo, M. Fornasier, G. Toscani, F. Vecil (2010) Particle, kinetic, and hydrodynamic models of swarming, in Naldi, G., Pareschi, L. and Toscani, G., Eds., Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, Birkäuser, 297–336. [Google Scholar]
  12. A. Chauviere, H. Hatzikirou, I. G. Kevrekidis, J. S. Lowengrub, V. Cristini. Dynamic density functional theory of solid tumor growth: preliminary models. AIP Advances, 2 (2012), 011210. [CrossRef] [Google Scholar]
  13. A. Colombi, M. Scianna, A. Tosin. Differentiated cell behavior: A multiscale approach using measure theory. Submitted for publication. Preprint at arXiv:1108.1212. [Google Scholar]
  14. E. Cristiani, B. Piccoli, A. Tosin. Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul., 9 (2011), 155–182. [CrossRef] [Google Scholar]
  15. E. Cristiani, P. Frasca, B. Piccoli. Effects of anisotropic interactions on the structure of animal groups. J. Math. Biol., 62 (2011), 569–588. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  16. E. Cristiani, B. Piccoli, A. Tosin. Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In G. Naldi, L. Pareschi, and G. Toscani, Eds., Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 337–364, 2010. [Google Scholar]
  17. V. Cristini, J. Lowengrub, Eds. Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press, 2011. [Google Scholar]
  18. S. S. Cross. Fractals in pathology. J. Pathol., 182 (1997), 1–8. [PubMed] [Google Scholar]
  19. A. Deutsch, S. Dormann. Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Birkäuser, Boston, 2005. [Google Scholar]
  20. D. Drasdo. On selected individual-based approaches to the dynamics of multicellular systems. In W. Alt and M. Griebel, Eds., Multiscale Modeling. Birkhäuser, Boston, 169–203, 2005. [Google Scholar]
  21. D. Drasdo. Coarse graining in simulated cell populations. Adv. Complex Syst., 8 (2005), 319–363. [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Drasdo, S. Hohme. Individual-based approaches to birth and death in avascular tumors. Math. Comp. Model, 37 (2003), 1163–1175. [CrossRef] [Google Scholar]
  23. H. B. Frieboes, F. Jin, Y. L. Chuang, S. M. Wise, J. S. Lowengrub, V. Cristini. Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. J. Theor. Biol., 264 (2010), 1254–1278. [CrossRef] [PubMed] [Google Scholar]
  24. P. Friedl, P. B. Noble, P. A. Walton, D. W. Laird, P. J. Chauvin, R. J. Tabah, M. Black, K. S. Zänker. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res., 55 (1995), 4557–4560. [PubMed] [Google Scholar]
  25. P. Friedl, D. Gilmour. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell. Biol., 10 (2009), 445–457. [CrossRef] [PubMed] [Google Scholar]
  26. F. Graner, J. A. Glazier. Simulation of biological cell sorting using a two dimensional extended Potts model. Phys. Rev. Lett., 69 (1992), 2013–2017. [CrossRef] [PubMed] [Google Scholar]
  27. Y. Hegerfeldt, M. Tusch, E. B. Bröcker, P. Friedl. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, β1-integrin function, and migration strategies. Cancer Res., 62 (2002), 2125–2130. [PubMed] [Google Scholar]
  28. O. Ilina, P. Friedl. Mechanisms of collective cell migration at a glance. J. Cell Sci., 122 (2009), 3203–3208. [CrossRef] [PubMed] [Google Scholar]
  29. O. Ilina, G.-J. Bakker, A. Vasaturo, R. M. Hoffman, P. Friedl. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys. Biol., 8 (2011), 015010. [CrossRef] [PubMed] [Google Scholar]
  30. A. A. Khalila, P. Friedl. Determinants of leader cells in collective cell migration. Integr. Biol., 2 (2010), 568–574. [CrossRef] [Google Scholar]
  31. Y. Kim, H. G. Othmer. A hybrid model of tumor-stromal interactions in breast cancer. Bull. Math. Biol. 75 (2013), 1304–1350. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. Y. Kim, M. A. Stolarska, H. G. Othmer. A hybrid model for tumor spheroid growth in vitro i: theoretical development and early results. Math. Models Methods Appl. Sci. 17 (2007), 1773. [CrossRef] [Google Scholar]
  33. G. Landini, Y. Hirayama, T. J. Li, M. Kitano. Increased fractal complexity of the epithelial-connective tissue interface in the tongue of 4NQ0-treated rats. Pathol. Res. Pract., 196 (2000), 251–258. [CrossRef] [PubMed] [Google Scholar]
  34. P. Macklin, M. E. Edgerton, A. M. Thompson, V. Cristini. Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): From microscopic measurements to macroscopic predictions of clinical progression. J. Theor. Biol., 301 (2012), 122–140. [CrossRef] [Google Scholar]
  35. B. Piccoli, A. Tosin. Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal., 199 (2011), 707–738. [CrossRef] [Google Scholar]
  36. L. Preziosi, A. Tosin. Multiphase and multiscale trends in cancer modelling. Math. Model. Nat. Phenom., 4 (2009), 1–11. [CrossRef] [EDP Sciences] [Google Scholar]
  37. M. Scianna, L. Preziosi. Multiscale Developments of the Cellular Potts Model. Multiscale Model. Simul., 10 (2012), 342–382. [CrossRef] [Google Scholar]
  38. M. Scianna, L. Preziosi. A hybrid Cellular Potts Model describing different morphologies of tumor invasion fronts. Math. Model. Nat. Phenom., 7 (2012), 78–104. [CrossRef] [EDP Sciences] [Google Scholar]
  39. M. Scianna, L. Preziosi. Cellular Potts Models: Multiscale Developments and Biological Applications. Chapman and Hall/CRC Press (2013) [Google Scholar]
  40. J. Smolle. Fractal tumor stromal border in a nonequilibrium growth model. Anal. Quant. Cytol. Histol., 20 (1998), 7–13. [PubMed] [Google Scholar]
  41. W. G. Stetler-Stevenson, S. Aznavoorian, L. A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis. Ann. Rev. Cell Biol. 9 (1993), 541–573. [CrossRef] [Google Scholar]
  42. M. A. Stolarska, Y. Kim, H. G. Othmer. Multi-scale models of cell and tissue dynamics. Phil. Trans. R. Soc. A, 367 (2009), 3525–3553. [CrossRef] [Google Scholar]
  43. M. L. Tanaka, W. Debinski, I. K. Puri. Hybrid mathematical model of glioma progression. Cell Prolif., 42 (2009), 637–646. [CrossRef] [PubMed] [Google Scholar]
  44. A. Tosin, P. Frasca, Existence and approximation of probability measure solutions to models of collective behaviors. Netw. Heterog. Media, 6 (2011), 561–596. [CrossRef] [MathSciNet] [Google Scholar]
  45. S. Turner, J. A. Sherratt. Intercellular adhesion and cancer invasion: A discrete simulation using the extended Potts model. J. Theor. Biol., 216 (2002), 85–100. [Google Scholar]
  46. S. M. Wise, J. S. Lowengrub, H. B. Frieboes, V. Cristini. Three-dimensional multispecies nonlinear tumor growth–I Model and numerical method. J. Theor. Biol., 253 (2008), 524–543. [CrossRef] [PubMed] [Google Scholar]
  47. J. M. Zahm, H. Kaplan, A. Herard, F. Doriot, D. Pierrot, P. Somelette, E. Puchelle Cell migration and proliferation during the in vitro repair of the respiratory epithelium. Cell. Motil. Cytoskel., 37 (1997), 33–43. [CrossRef] [Google Scholar]
  48. Y. W. Zhang, G. F. Vande Woude. HGF/SF-Met signaling in the control of branching morphogenesis and invasion. J. Cell. Biochem., 88 (2003), 408–417. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.