Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 1, 2015
Hybrid models
Page(s) 36 - 47
Published online 12 December 2014
  1. S.S. Acharya, D.M. Dimichele. Rare inherited disorders of fibrinogen. Haemophilia, 14 (2008), 1151–1158. [CrossRef] [PubMed] [Google Scholar]
  2. A.G. Alenitsyn, A.S. Kondratyev, I. Mikhailova, I. Siddique. Mathematical Modeling of Thrombus Growth in Microvessels. Journal of Prime Research in Mathematics, Vol. 4 (2008), 195–205. [Google Scholar]
  3. M.P. Allen, D.J. Tidesley. Computer Simulation of Liquids. Clarendon, Oxford, 1987. [Google Scholar]
  4. M. Anand, K. Rajagopal, K.R. Rajagopal. A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J Theor Biol., 253 (2008), no. 4, 725-38. Epub 2008 Apr 25. PubMed PMID: 18539301. [Google Scholar]
  5. M. Anand, K. Rajagopal, K.R. Rajagopal. A model for the formation and lysis of blood clots. Pathophysiol Haemost Thromb. 34 2005, no. 2–3, 109-20. PubMed PMID: 16432312. [Google Scholar]
  6. N. Bessonov, E. Babushkina, S.F. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev, V. Volpert. Numerical Modelling of Cell Distribution in Blood Flow. Math. Model. Nat. Phenom., 9 (2014), no. 9. [Google Scholar]
  7. N. Bessonov, E. Babushkina, S.F. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev, V. Volpert. Numerical Simulations of Blood Flows With Non-uniform Distribution of Erythrocytes and Platelets. Russian Journal of Numerical Analysis and Mathematical Modelling, vol. 28 (2013), no. 5, 443–458. [Google Scholar]
  8. T. Bodnar, A. Sequeria. Numerical Simulation of the Coagulation Dynamics of Blood. Computational and Mathematical Methods in Medicine, 9 (2008), no. 2, 83–104. [CrossRef] [MathSciNet] [Google Scholar]
  9. Y.L. Chiu, Y.L. Chou, C.Y. Jen. Platelet deposition onto fibrin-coated surfaces under flow conditions. Blood Cells, 13 (1988), no. 3, 437–50. PubMed PMID: 3382750. [PubMed] [Google Scholar]
  10. D.A. Fedosov. Multiscale Modeling of Blood Flow and Soft Matter. PhD dissertation at Brown University, (2010). [Google Scholar]
  11. D.A. Fedosov, I.V. Pivkin, G.E. Karniadakis. Velocity limit in DPD simulations of wall-bounded flows. J. Comp. Phys., 227 (2008) 2540–2559. [Google Scholar]
  12. N. Filipovic, M. Kojic, A. Tsuda. Modelling Thrombosis Using Dissipative Particle Dynamics Method. Phil. Trans. R. Soc., A 366 2008, 3265–3279. [Google Scholar]
  13. A.L. Fogelson. Cell-based Models of Blood Clotting. Single-Cell-Based Models in Biology and Medicine (ed. by A.R.A. Anderson, M.A.J. Chaplain, K.A. Rejniak), Mathematics and Biosciences in Interaction, 234–169, Birkhäuser Verlag Basel, 2007. [Google Scholar]
  14. J.E. Freedman. Molecular Regulation of Platelet-Dependent Thrombosis. Circulation, 112 (2005), 2725–2734. [CrossRef] [PubMed] [Google Scholar]
  15. R.D. Groot, P.B. Warren. Dissipative particle dynamics: Bridging the Gap Between Atomistic and Mesoscopic Simulation. J. Chem. Phys., 107 (1997), no. 11, 4423–4435. [CrossRef] [Google Scholar]
  16. R.D. Guy, A.L. Fogelson, J.P. Keener. Fibrin gel formation in a shear flow. Math Med Biol., 24 (2007), no. 1, 111–30. [Google Scholar]
  17. S.P. Jackson. The growing complexity of platelet aggregation. Blood, 109 (2007), no. 227, 12, 5087-95. Epub. [Google Scholar]
  18. C.J. Jen, S.J. Hu, H.J. Wu, T.S. Lin, C.W. Mao. Platelet-fibrin interaction in the suspension and under flow conditions. Adv Exp Med Biol., 281 (1990), 277–85. PubMed PMID: 2102618. [CrossRef] [PubMed] [Google Scholar]
  19. C.J. Jen, J.S. Lin. Direct observation of platelet adhesion to fibrinogen- and fibrin-coated surfaces. Am J Physiol., 261 (1991), (5 Pt 2): H1457-63. PubMed PMID: 1951733. [PubMed] [Google Scholar]
  20. C.J. Jen, Y.W. Tai. Morphological study of platelet adhesion dynamics under whole blood flow condition. Platelets, 3 (1992), no. 3, 145–53. PubMed PMID: 21043907. [CrossRef] [PubMed] [Google Scholar]
  21. M.M. Kamocka, J. Mu, X. Liu, N. Chen, A. Zollman, B. Sturonas-Brown, K. Dunn, Z. Xu, D.Z. Chen, M.S. Alber, E.D. Rosen. Two-photon intravital imaging of thrombus development. J Biomed Opt, 15 (2010), 016020. [CrossRef] [PubMed] [Google Scholar]
  22. M. Karttunen, I. Vattulainen, A. Lukkarinen. A novel methods in soft matter simulations. Springer, Berlin, 2004. [Google Scholar]
  23. Y.V. Krasotkina, E.I. Sinauridze, F.I. Ataullakhanov. Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion. Biochimica et Biophysica Acta 1474, (2000), 337–345. [Google Scholar]
  24. S. Kulkarni, S.M. Dopheide, C.L. Yap, C. Ravanat, M. Freund, P. Mangin, K.A. Heel, A. Street, I.S. Harper, F. Lanza, S.P. Jackson. A revised model of platelet aggregation. J Clin Invest., 105 (2000), no. 6, 783–91. [CrossRef] [PubMed] [Google Scholar]
  25. I.V. Pivkin, P.D. Richardson, G. Karniadakis. Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. PNAS, 103 (2006), 17164–17169. [CrossRef] [Google Scholar]
  26. I.V. Pivkin, P.D. Richardson, G.E. Karniadakis. Effect of Red Blood Cells on Platelet Aggregation. Engineering in Medicine and Biology Magazine, IEEE 28.2 (2009), 32–37. [Google Scholar]
  27. U.D. Schiller. Dissipative Particle Dynamics. A Study of the Methodological Background. Diploma thesis at Faculty of Physics University of Bielefeld, 2005 [Google Scholar]
  28. A.M. Shibeko, E.S. Lobanova, M.A. Panteleev, F.I. Ataullakhanov. Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC Syst Biol, 4 (2010), 5. no. [Google Scholar]
  29. C.R. Sweet, S. Chatterjee, Z. Xu, K. Bisordi, E.D. Rosen, M. Alber. Modelling platelet - blood flow interaction using the subcellular element Langevin method. J. R. Soc. Interface 8 (2011), 1760–1771. [CrossRef] [PubMed] [Google Scholar]
  30. A. Tokarev, I. Sirakov, G. Panasenko, V. Volpert, E. Shnol, A. Butylin, and F. Ataullakhanov. Continuous mathematical model of platelet thrombus formation in blood flow. Russian Journal of Numerical Analysis and Mathematical Modelling. , 27 (2012), no. 2, 192–212. [CrossRef] [Google Scholar]
  31. A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert. Modelling of clot growth and growth stop in flow by the method of dissipative particle dynamics. Russian J. Numer. Anal. Math. Modelling, 27 (2012), no. 5, 507–522. [CrossRef] [MathSciNet] [Google Scholar]
  32. A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert. Modelling of thrombus growth in flow with a DPD–PDE method. Journal of Theoretical Biology, 337 (2013), –41. [Google Scholar]
  33. Z. Xu, N. Chen, M.M. Kamocka, E.D. Rosen, M. Alber. A multiscale model of thrombus development. J. R. Soc. Interface, 5 (2008), 705–722. [CrossRef] [PubMed] [Google Scholar]
  34. Z. Xu, J. Lioi, J. Mu, M.M. Kamocka, X. Liu, D.Z. Chen, E.D. Rosen, M. Alber. A Multiscale Model of Venous Thrombus Formation with Surface-Mediated Control of Blood Coagulation Cascade. Biophysical Journal, vol. 98 (2010), 1723–1732. [CrossRef] [PubMed] [Google Scholar]
  35. Z. Xu, N. Chen, S. Shadden, J.E. Marsden, M.M. Kamocka, E.D. Rosen, M. Alber. Study of Blood Flow Impact on Growth of Thrombi Using a Multiscale Model. Soft Matter, 5 (2009), 769–779. [CrossRef] [Google Scholar]
  36. Z. Xu, S. Christleyy, J. Lioiz, O. Kim, C. Harveyx, W. Sun, E.D. Rosen, M. Alber. Multiscale Model of Fibrin Accumulation on the Blood Clot Surface and Platelet Dynamics. Methods in Cell Biology, vol. 110, 2012. [Google Scholar]
  37. T.N. Zaidi, L.V. McIntire, D.H. Farrell, P. Thiagarajan. Adhesion of platelets to surface-bound fibrinogen under flow. Blood, 88 (1996), no. 8, 2967–72. PubMed PMID: 8874193. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.