Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 1, 2015
Hybrid models
Page(s) 48 - 63
Published online 13 February 2015
  1. A.S. Ackleh, K. Deng, K. Ito, J. Thibodeaux. A structured erythropoiesis model with nonlinear cell maturation velocity and hormone decay rate. Math. Bios. 204, (2006), 21–48. [Google Scholar]
  2. E. Afenya, S. Mundle. Hematologic disorders and bone marrow-peripheral blood dynamics. Math. Model. Nat. Phenom., 5 (2010), no. 3, 15–27. [CrossRef] [EDP Sciences] [Google Scholar]
  3. R. Apostu, M.C. Mackey. Understanding cyclical thrombocytopenia: A mathematical modeling approach. J. Theor. Biol., 251 (2008), 297–316. [CrossRef] [PubMed] [Google Scholar]
  4. S. Balea, A. Halanay, D. Jardan, M. Neamtu. Stability analysis of a feedback model for the action of the immune system in leukemia. Math. Model. Nat. Phenom., 9 (2014), no. 1, 108–132. [CrossRef] [EDP Sciences] [Google Scholar]
  5. S. Bernard, J. Bélair, M.C. Mackey. Oscillations in cyclical neutropenia: New evidence based on mathematical modeling. J. Theor. Biol., 223, (2003), 283–298. [CrossRef] [PubMed] [Google Scholar]
  6. N. Bessonov, L. Pujo-Menjouet, V. Volpert. Cell modelling of hematopoiesis. Math. Model. Nat. Phenom., 1 (2006), no. 2, 81–103. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. N. Bessonov, P. Kurbatova, V. Volpert. Particle dynamics modelling of cell populations. Proc. Conf. JANO, Mohhamadia, 2008. Math. Model. Nat. Phenom., 5 (2010), 7, 42–47. [Google Scholar]
  8. N. Bessonov, F. Crauste, I. Demin, V. Volpert. Dynamics of erythroid progenitors and erythroleukemia. Math. Model. Nat. Phenom., 4 (2009), no. 3, 210–232. [CrossRef] [EDP Sciences] [Google Scholar]
  9. N. Bessonov, F. Crauste, S. Fischer, P. Kurbatova, V. Volpert. Application of hybrid models to blood cell production in the bone marrow. Math. Model. Nat. Phenom., 6 (2011), no. 7, 2–12. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  10. N. Bessonov, I. Demin, P. Kurbatova, L. Pujo-Menjouet, V. Volpert. Multi-agent systems and blood cell formation. In: Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies, F. Alkhateeb, E. Al Maghayreh, I. A. Doush, Editors, (2011), 395–424. [Google Scholar]
  11. N. Bessonov, N. Eymard, P. Kurbatova, V. Volpert. Mathematical modeling of erythropoiesis in vivo with multiple erythroblastic islands. Applied Mathematics Letters, 25 (2012), 1217–1221. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Bouilloux, G. Juban, N. Cohet, D. Buet, B. Guyot, W. Vainchenker, F. Louache, F. Morle. EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood, 1 112 (3) (2008), 576-84. [Google Scholar]
  13. A.B. Cantor, S.H. Orkin. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21 (2002), 3368–3376. [CrossRef] [PubMed] [Google Scholar]
  14. J.A. Chasis, N. Mohandas. Erythroblastic islands: niches for erythropoiesis. Blood, 112 (2008). [Google Scholar]
  15. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis – I. Periodic chronic myelogenous leukemia. J. Theor. Biol., 237, (2005), 117–132. [CrossRef] [PubMed] [Google Scholar]
  16. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis – II. Cyclical neutropenia. J. Theor. Biol., 237 (2005), 133–146. [CrossRef] [PubMed] [Google Scholar]
  17. F. Crauste, I. Demin, O. Gandrillon, V. Volpert. Mathematical study of feedback control roles and relevance in stress erythropoiesis. J. Theor. Biology, 263 (2010), 303–316. [Google Scholar]
  18. F. Crauste, L. Pujo-Menjouet, S. Génieys, C. Molina, O. Gandrillon. Adding Self-Renewal in Committed Erythroid Progenitors Improves the Biological Relevance of a Mathematical Model of Erythropoiesis, J. Theor. Biology, 250 (2008), 322–338. [Google Scholar]
  19. S. Dazy, F. Damiola, N. Parisey, H. Beug, O. Gandrillon. The MEK-1/ERKs signaling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells. Oncogene, 22 (2003), 9205–9216. [CrossRef] [PubMed] [Google Scholar]
  20. I. Demin, F. Crauste, O. Gandrillon, V. Volpert. A multi-scale model of erythropoiesis. Journal of Biological Dynamics, 4 (2010), 59–70. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. C. Duff, K. Smith-Miles, L. Lopes, T. Tian. Mathematical modelling of stem cell differentiation: the PU.1-GATA-1 interaction. J. Math. Biol., 64 (2012), 449–468. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. J. Eller, I. Gyori, M. Zollei, F. Krizsa. Modelling Thrombopoiesis Regulation - I Model description and simulation results. Comput. Math. Appli, 14 (1987), 841–848. [CrossRef] [Google Scholar]
  23. N. Eymard, N. Bessonov, O. Gandrillon, M.J. Koury, V. Volpert, The role of spatial organisation of cells in erythropoiesis. Journal of Mathematical Biology (2014). [Google Scholar]
  24. S. Fischer, P. Kurbatova, N. Bessonov, O. Gandrillon, V. Volpert, F. Crauste. Modelling erythroblastic islands : using a hybrid model to assess the function of central macrophage. Journal of Theoretical Biology, 298 (2012), 92–106. [Google Scholar]
  25. P. Frontelo, D. Manwani, M. Galdass, H. Karsunky, F. Lohmann, P.G. Gallagher, J.J. Bieker. Novel role for EKLF in megakaryocyte lineage commitment. Blood, 110 (12) (2007), 3871–3880. [CrossRef] [PubMed] [Google Scholar]
  26. A. Golubev. Random discrete competing events vs. dynamic bistable switches in cell proliferation in differentiation. J. Theor. Biol., 267(3) (2010), 341–354. [CrossRef] [PubMed] [Google Scholar]
  27. A. Halanay. Periodic solutions in a mathematical model for the treatment of chronic myelogenous leukemia. Math. Model. Nat. Phenom., 7 (2012), no. 1, 235–244. [CrossRef] [EDP Sciences] [Google Scholar]
  28. A. Halanay, D. Candea, I. R. Radulescu. Existence and stability of limit cycles in a two-delays model of hematopoiesis including asymmetric division. Math. Model. Nat. Phenom., 9 (2014), no. 1, 58–78. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  29. M. J. Koury, M.C. Bondurant. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science, 248 (1990), 378–381. [CrossRef] [PubMed] [Google Scholar]
  30. P. Kurbatova, S. Bernard, N. Bessonov, F. Crauste, I. Demin, C. Dumontet, S. Fischer, V. Volpert. Hybrid Model of Erythropoiesis and Leukemia Treatment with Cytosine Arabinoside. 2011, SIAM J. Appl. Math, Volume 71, Issue 6, (2011) 2246–2268. [Google Scholar]
  31. P. Kurbatova, N. Eymard, V. Volpert. Hybrid model of erythropoiesis. Acta Biotheoretica, Volume 61, Issue 3 (2013), 305-315. [Google Scholar]
  32. F. Lohmann, J. J. Bieker. The EKLF gene is induced in response to Bmp4/Smad signaling and Gata factor activity during erythropoiesis Blood Cells, Molecules, and Diseases 38 (2007) 120 –191 [CrossRef] [Google Scholar]
  33. M.C. Mackey. Unified hypothesis of the origin of aplastic anaemia and periodic hematopoïesis. Blood 51, (1978), 941–956. [PubMed] [Google Scholar]
  34. M.C Mackey. Dynamic hematological disorders of stem cell origin. In: G. Vassileva-Popova and E. V. Jensen, Editors. Biophysical and Biochemical Information Transfer in Recognition, Plenum Press, New York, (1979), 373–409. [Google Scholar]
  35. M.C. Mackey, R. Rudnicki. A new criterion for the global stability of simultaneous cell replication and maturation processes. J. Math. Biol., 38 (1999), 195–219. [CrossRef] [Google Scholar]
  36. J.M. Mahaffy, J. Belair, M.C. Mackey. Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis. J. Theor. Biol., 190, (1998) 135–146. [CrossRef] [PubMed] [Google Scholar]
  37. R. De Maria, U. Testa, L. Luchetti, A. Zeuner, G. Stassi, E. Pelosi, R. Riccioni, N. Felli, P. Samoggia, C. Peschle. Apoptotic Role of Fas/Fas Ligand System in the Regulation of Erythropoiesis. Blood, 93 (1999), 796–803. [PubMed] [Google Scholar]
  38. J.M. Osborne, A. Walter, S.K. Kershaw, G.R. Mirams, A.G. Fletcher, P. Pathmanathan, D. Gavaghan, O.E. Jensen, P.K. Maini, H.M. Byrne. A hybrid approach to multi-scale modelling of cancer. Phil. Trans. R. Soc. A, 368 (2010), 5013–5028. [Google Scholar]
  39. H. Ozbay, C. Bonnet, H. Benjelloun, J. Clairambault. Stability analysis of cell dynamics in leukemia. Math. Model. Nat. Phenom., 7 (2012), no. 1, 203–234. [Google Scholar]
  40. A.A. Patel, E.T. Gawlinsky, S.K. Lemieux, R.A. Gatenby. A Cellular Automaton Model of Early Tumor Growth and Invasion: The Effects of Native Tissue Vascularity and Increased Anaerobic Tumor Metabolism. J. Theor. Biol., 213 (2001), 315–331. [CrossRef] [PubMed] [Google Scholar]
  41. I. Roeder. Quantitative stem cell biology: computational studies in the hematopoietic system. Curr. Opin. Hematol., 13 (2006), 222–228. [CrossRef] [PubMed] [Google Scholar]
  42. C. Rubiolo, D. Piazzolla, K. Meissl, H. Beug, J.C. Huber, A. Kolbus, M. Baccarini. A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation. Blood, 108 (2006), 152–159. [CrossRef] [PubMed] [Google Scholar]
  43. M. Santillan, J.M. Mahaffy, J. Belair, M.C. Mackey. Regulation of platelet production: The normal response to perturbation and cyclical platelet disease. J. Theor. Biol., 206 (2000), 585–603. [Google Scholar]
  44. J. Starck, M. Weiss-Gayet, C. Gonnet, B. Guyot, J.M. Vicat, F. Morlé. Inducible Fli-1 gene deletion in adult mice modifies several myeloid lineage commitment decisions and accelerates proliferation arrest and terminal erythrocytic differentiation. Blood. 116(23) (2010), 4795–805. [CrossRef] [PubMed] [Google Scholar]
  45. T. Stiehl, A. Marciniak-Czochra. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math. Model. Nat. Phenom., 7 (2012), no. 1, 166–202. [Google Scholar]
  46. V. Volpert. Elliptic partial differential equations. Volume 2. Reaction-diffusion equations. Birkhäuser, 2014. [Google Scholar]
  47. H.E. Wichmann, M.D. Gerhardts, H. SPechtmeyer, R. Gross. A mathematical model of thrombopoiesis in rats. Cell Tissue Kinet., 12 (1979), 551–567. [PubMed] [Google Scholar]
  48. H.E. Wichmann, M. Loeffler. Mathematical Modeling of Cell Proliferation. Boca Raton, FL, CRC, 1985. [Google Scholar]
  49. H. Wulff, H.E. Wichmann, M. Loeffler, K. Pantel. A mathematical model of erythropoiesis in mice and rats. Part 3. Suppressed erythropoiesis. Cell Tissue Kinet., 22 (1989), 51–61. [PubMed] [Google Scholar]
  50. H.E. Wichmann, M. Loeffler, K. Pantel, H. Wulff. A mathematical model of erythropoiesis in mice and rats. Part 2. Stimulated erythropoiesis. Cell Tissue Kinet., 22 (1989), 31–49. [PubMed] [Google Scholar]
  51. M. Yamamoto, S. Takahashi, K. Onodera, Y. Muraosa, J. D. Engel. Upstream and downstream of erythroid transcription factor GATA-1. Genes Cells. 2 (1997), 107–115. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.