Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 10, Number 1, 2015
Hybrid models
|
|
---|---|---|
Page(s) | 64 - 93 | |
DOI | https://doi.org/10.1051/mmnp/201510104 | |
Published online | 13 February 2015 |
- T. Alarcón, H.M. Byrne, P.K. Maini. A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J. theor. Biol., 229, (2004), 395–411. [CrossRef] [PubMed] [Google Scholar]
- T. Alarcón, H.M. Byrne, P.K. Maini. A multiple scale model of tumour growth. Multi-scale Model. Sim, 3, (2005), 440–475. [CrossRef] [Google Scholar]
- T. Alarcon, K.M. Page. Matematical models of the VEGF receptor and its role on cancer therapy. J. R. Soc.Interface, 4, (2007), 283–304. [CrossRef] [Google Scholar]
- B. Albert, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Walter. Molecular biology of the cell. Garland Publishing, New York, 3rd edition, 1994. [Google Scholar]
- A.R.A. Anderson, M.A.J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol., 60 (1998), 857–899. [Google Scholar]
- K. Ball, T.G. Kurtz, L. Popovic, G. Rempala. Asymptotic analysis of multiscale approximations to reaction networks. Ann. App. Prob., 16 (2006), 1925–1961. [CrossRef] [Google Scholar]
- B. Bedessem, A. Stephanou. A mathematical model of HiF-1α-mediated response to hypoxia on the G1/S transition. Math. Biosci. 248 (2014), 31-39. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman. The theory of critical phenomena. Oxford University Press, Oxford, UK (1992). [Google Scholar]
- A.H. Box, D.J. Demetrick. Cell-cycle kinase inhibitor expression and hypoxia-induced cell-cycle arrest in human cell lines. Carcino-genesis, (2004), 2325–2335. [Google Scholar]
- C.J.W. Breward, H.M. Byrne, C.E. Lewis. The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol., 45 (2002), 125–152. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- H.M. Byrne. Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer, 10 (2010), 221-230. [CrossRef] [PubMed] [Google Scholar]
- Y. Cao, D.T. Gillespie, L.R. Petzold. Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys., 124, 044109 (2006), 1–11. [Google Scholar]
- Y. Chen, R. Cairns, I. Papandreou, A. Koong, N.C. Denko. Oxygen Consumption Can Regulate the Growth of Tumors, a New Perspective on the Warburg Effect. PLoS One. 4(9):e7033, (2009) [CrossRef] [PubMed] [Google Scholar]
- T.S. Deisboeck, Z. Wang, P. Macklin, V. Cristini. Multi-scale cancer modeling. Annu. Rev. Biomed. Eng., 13 (2011), 127-155. [CrossRef] [PubMed] [Google Scholar]
- R. Durrett. Cancer modeling: A personal perspective. Notices of the AMS. 60 (2013), 304–309. [CrossRef] [Google Scholar]
- J.O. Funk. Cancer cell-cycle control. Anticancer Res., 19, (1999), 4778–4780. [Google Scholar]
- C.W. Gardiner. Stochastic methods. Springer-Verlag, Berlin, Germany (2009). [Google Scholar]
- L.B. Gardner, Q. Li, M.S. Parks, W.M. Flanagan, G.L. Semanza, C.V. Dang. Hypoxia inhibits G1/S transition through regulation of p27 expression. J. Biol. Chem., 276, (2001), 77919–7926. [Google Scholar]
- M.A. Gibson, J. Bruck. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A., 104 (2000), 1876–1889. [CrossRef] [Google Scholar]
- D.T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys., 22, (1976), 403–434. [Google Scholar]
- D.T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys., 155, (2001), 1716–1733. [CrossRef] [Google Scholar]
- D.T. Gillespie, L.R. Petzold. Improved leap-size selection for accelerated stochastic simulation. J. Chem. Phys., 119, (2003), 8229–8234. [CrossRef] [Google Scholar]
- S.L. Green, R.A. Freiberg, A.J. Giaccia. p21(Cip1) and p27(Kip1) regulate cell-cycle re-entry after hypoxic stress but are not necessary for hypoxia-induced arrest. Mol. Cell Biol., 21 (2001), 1196–1206. [CrossRef] [PubMed] [Google Scholar]
- G. Grimmet, D. Stirzaker. Probability and random processes. Oxford University Press, Oxford, UK (2001) [Google Scholar]
- P.E. Hand, B.E. Griffith. Adaptive multiscale model for simulating cardiac conduction. Proc. Natl. Acad. Sci., 107 (2010), 14603-14608. [CrossRef] [Google Scholar]
- S.D. Hester, J.M. Belmonte, J.S. Gens, S.G. Clendenon, J.A. Glazier. A multi-cell, multiscale vodel of vertebrate segmentation and somite formation. PLoS Comput. Biol. 7: e1002155, 2011. [CrossRef] [PubMed] [Google Scholar]
- Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, J.P. Freyer. A multiscale model for avascular tumor growth Biophys. J., 89 (2005), 38843894. [CrossRef] [PubMed] [Google Scholar]
- Y.J. Kim, H.G. Othmer. A hybrid model of tumor-stromal interactions in breast cancer. Bull. Math. Biol., 5 (2013), 1304-1350. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- H. Kitano. Cancer as a robust system: implications for anticancer therapy. Nat. Rev. Cancer., 4 (2004), 227–235. [CrossRef] [PubMed] [Google Scholar]
- R. Kubo, K. Matsuo, K. Kitahara. Fluctuation and relaxation of macrovariables. J. Stat. Phys., 9, (1973) 51–96. [CrossRef] [Google Scholar]
- S. Land, S.A. Niederer, W.E. Louch, O.M. Sejersted, N.P. Smith. Integrating multiscale data to create a virtual physiological mouse heart. J. R. Soc. Interface Focus., 3 (2013), 20120076. [CrossRef] [Google Scholar]
- F. Lignet, V. Calvez, E. Grenier, B. Ribba. A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties. Math. Biosci. Eng., 10 (2013), 167–84. [MathSciNet] [PubMed] [Google Scholar]
- J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini. Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity. 23:R1R91, 2010. [Google Scholar]
- P. Macklin, S. McDougall, A.R.A. Anderson, M.A.J. Chaplain, V. Cristini, J. Lowengrub. Multi-scale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol., 58 (2009), 765-798. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- R.S. Maier, D.L. Stein. A scaling theory of bifurcations in the symmetric weak-noise escape problem. J. Stat. Phys., 83 (1996), 291–357. [CrossRef] [Google Scholar]
- A.D. McCulloch. Systems biology and multiscale modelling of the heart. In Proccedings of the Biomedical Science & Engineering Conference, 2009. BSEC 2009. First Annual ORNL., 1-3, 2009. [Google Scholar]
- S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain, J.A. Sherratt. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol., 64 (2002), 673–702. [CrossRef] [PubMed] [Google Scholar]
- S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol., 241 (2006), 564–589. [CrossRef] [PubMed] [Google Scholar]
- J.A. Menendez, J. Joven, S. Cufi, B. Corominas-Faja, C. Oliveras-Ferraros, E. Cuyas, B. Martin-Castillo, E. Lopez-Bonet, T. Alarcon, A. Vazquez-Martin. The Warburg effect version 2.0: Metabolic reprogramming of cancer stem cells. Cell Cycle, 18 (2013), 1166–1179. [CrossRef] [Google Scholar]
- A.C. Oates, N. Gorfinkiel, M. Gonzalez-Gaitan, C.-P. Heisenberg. Quantitative approaches in developmental biology. Nature Rev. Gen., 10 (2009), 517-530. [CrossRef] [Google Scholar]
- J.M. Osborne, A. Walter, S.K. Kershaw, G.R. Mirams, A.G. Fletcher, P. Pathmanathan, D. Gavaghan, O.E. Jensen, P.K. Maini, H.M. Byrne. A hybrid approach to multiscale modelling of cancer. Phil. Trans. R. Soc., A. 368 (2010), 5013–5028. [Google Scholar]
- M.R. Owen, T. Alarcón, H.M. Byrne, P.K. Maini. Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol., 58 (2009), 689–721. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- H. Perfahl, H.M. Byrne, T. Chen, V. Estrella, T. Alarcon, A. Lapin, R.A. Gatenby, R.J. Gillies, M.C. Lloyd, P.K. Maini, M. Reuss, M.R. Owen Multi-scale Modelling of Vascular Tumour Growth in 3D: The Roles of Domain Size and Boundary Conditions. PLoS One. 6: e14790, 2011. [Google Scholar]
- G.G. Powathil, D.J.A. Adamson, M.A.J. Chaplain. Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model. PLoS Comput. Biol. 9: e1003120, 2013. [CrossRef] [PubMed] [Google Scholar]
- L. Preziosi, A. Tosin. Multiphase and Multi-scale Trends in Cancer Modelling. Math. Model. Nat. Phenom., 4 (2009), 1–11. [CrossRef] [EDP Sciences] [Google Scholar]
- S. Redner. A guide to first-passage processes. Cambridge University Press, Cambridge, UK, 2001. [Google Scholar]
- K.A. Rejniak, A.R.A. Anderson. Multi-scale hybrid models of tumor growth. Wiley Interdisciplinary Reviews: System Biology and Medicine. 2010. [Google Scholar]
- B. Ribba, T. Collin, S. Schnell. A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor. Biol. Med. Model., 3:7, 2006. [CrossRef] [PubMed] [Google Scholar]
- S. Schnell, P.K. Maini, S.A. Newman, T.J. Newman (eds.). Multi-scale Modeling of Developmental Systems. Academic Press, Oxford, UK, 2008. [Google Scholar]
- A. Stephanou, S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain. Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comp. Model., 41 (2005), 1137–1156. [CrossRef] [Google Scholar]
- Y. Setty. Multi-scale computational modeling of developmental biology. Bioinformatics, 28 (2012), 20222028. [CrossRef] [Google Scholar]
- N.P. Smith, D.P. Nickerson, E.J. Crampin, P.J. Hunter. Multi-scale computational modelling of the heart. Acta Numerica., 13 (2004), 371-431. [CrossRef] [MathSciNet] [Google Scholar]
- K. Strebhardt, A. Ullrich. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 8 (2008), 473–480. [CrossRef] [PubMed] [Google Scholar]
- D.W. Stacey. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Current Opinion in Cell Biology, 15 (2003), 158–163. [CrossRef] [PubMed] [Google Scholar]
- A. Szabo, R.M.H. Merks. Cellular Potts modeling of tumor growth, tumor invasion, and tumor evolution. Front. Oncol., 3 (2013), 87. [CrossRef] [PubMed] [Google Scholar]
- P. Tracqui. Biophysical models of tumour growth. Rep. Progr. Phys., 72 (2009), 056701. [Google Scholar]
- R.D.M. Travasso, E. Corvera Poiré, M. Castro, J.C. Rodrguez-Manzaneque, A. Hernndez-Machado. Tumor angiogenesis and vascular patterning: A mathematical model. PLoS One. 6: e19989, 2011. [Google Scholar]
- J.J. Tyson, B. Novak. Regulation of the Eukaryotic Cell Cycle: Molecular Antagonism, Hysteresis, and Irreversible Trasitions. J. theor. Biol., 210 (2001), 249–263. [CrossRef] [PubMed] [Google Scholar]
- N.G. Van Kampen. Stochastic processes in Physics and Chemistry. Elsevier, The Netherlands, (2007). [Google Scholar]
- F. van Drogen, O. Sangfelt, A. Malyukova, L. Matskova, E. Yeh, A.R. Means, S.I. Reed. Ubiquitylation of cyclin e requires the sequential function of scf complexes containing distinct hcdc4 isoforms. Mol. Cell., 23 (2006), 37–48. [CrossRef] [PubMed] [Google Scholar]
- R. Visintin, S. Prinz, A. Amon. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science, 278 (1997), 460–463. [CrossRef] [PubMed] [Google Scholar]
- J. Walpole, J.A. Papin, S.M. Peirce. Multi-scale computational models of complex biological systems. Annu. Rev. Biomed. Eng., 15 (2013), 137–154. [CrossRef] [PubMed] [Google Scholar]
- W. Zachariae, K. Nasmyth. Whose end is destruction: cell division and anaphase-promoting complex. Genes Devel., 13 (1999), 2039–2058. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.