Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 1, 2015
Hybrid models
Page(s) 94 - 107
Published online 13 February 2015
  1. C. L. Chaffer, E. W. Thompson, E. D. Williams. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs, 185 (2007), 7–19. [CrossRef] [PubMed] [Google Scholar]
  2. A. Chauvière, L. Preziosi, H. Byrne A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism. Math. Med. Biol., 27 (2010), 255–81. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. B. Chopard, M. Droz. Cellular automata modeling of physical systems. Cambridge University Press (1998). [Google Scholar]
  4. G. R. Dennis, J. J. Hope, M. T. Johnsson. XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations. Comput. Phys. Commun., 184 (2013), 201–208. [CrossRef] [Google Scholar]
  5. A. Deutsch, S. Dormann. Cellular automaton modeling of biological pattern formation. Birkhäuser (2005). [Google Scholar]
  6. K. Doxzen, S. R. Vedula, M. C. Leong, H. Hirata, N.S. Gov, A. J. Kabla, B. Ladoux, C.T. Lim. Guidance of collective cell migration by substrate geometry. Integr. Biol. (Camb.), 5 (2013), 1026–35. [CrossRef] [Google Scholar]
  7. P. Friedl, K.ZS. Zänker, E.B. Bröcker. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech., 43 (1998), 369–78. [CrossRef] [PubMed] [Google Scholar]
  8. P. Friedl. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol., 16 (2004), 14–23. [CrossRef] [PubMed] [Google Scholar]
  9. E. Favaro, G. Nardo, L. Persano, M. Masiero, L. Moserle, R. Zamarchi, E. Rossi, G. Esposito, M. Plebani, U. Sattler et al. Hypoxia inducible factor-1alpha inactivation unveils a link between tumor cell metabolism and hypoxia-induced cell death. Am. J. Pathol., 173 (2008), 1186–201. [CrossRef] [PubMed] [Google Scholar]
  10. P. Friedl, D. Gilmour. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell. Biol., 10 (2009), 445–57. [CrossRef] [PubMed] [Google Scholar]
  11. H. Hatzikirou, D. Basanta, M. Simon, C. Schaller, A. Deutsch. ‘Go or Grow’: the key to the emergence of invasion in tumor progression? Math. Med. Biol., 29 (2012), 49–65. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. T. Lämmermann, M. Sixt. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol., 21 (2009), 636-644. [CrossRef] [PubMed] [Google Scholar]
  13. H. Othmer, S. Dunbar, W. Alt. Models of dispersal in biological systems. J. Math. Biol., 26 (1988), 263-98. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. K. Pham, A. Chauvière, H. Hatzikirou, X. Li, H. Byrne, V. Cristini, J. Lowengrub. Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy. J. Biol. Dyn., 6 (2012), 54–71. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. A. Puliafito, L. Hufnagela, P. Neveua, S. Streichan, A. Sigal, D. Kuchnir Fygenson, and B. I. Shraiman. Collective and single cell behavior in epithelial contact inhibition. Proc. Natl. Acad. Sci. U.S.A., 109 (2012), 739–44. [CrossRef] [Google Scholar]
  16. D. Sarrio, S. M. Rodriguez-Pinilla, D. Hardisson, A. Cano, G. Moreno-Bueno, J. Palacios. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res., 68 (2008), 989–97. [CrossRef] [PubMed] [Google Scholar]
  17. S. L. Schor, A. M. Schor. Foetal-to-adult transitions in fibroblast phenotype: their possible relevance to the pathogenesis of cancer. J. Cell Sci. Suppl., 8 (1987), 165–80. [CrossRef] [PubMed] [Google Scholar]
  18. M. Tektonidis, H. Hatzikirou, A. Chauvière, M. Simmon, K. Schaller, A. Deutsch. Identification of intrinsic in vitro cellular mechanisms for glioma invasion. J. Theor. Biol., 21 (2011), 131–47. [CrossRef] [PubMed] [Google Scholar]
  19. J. P. Thiery. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2 (2002), 442–454. [CrossRef] [PubMed] [Google Scholar]
  20. A. Vultur, J. Cao, R. Arulanandam, J. Turkson, R. Jove, P. Greer, A. Craig, B. Elliott, L. Raptis. Cell-to-cell adhesion modulates Stat3 activity in normal and breast carcinoma cells. Oncogene, 23 (2004), 2600–16. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.