Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 1, 2015
Hybrid models
Page(s) 108 - 141
DOI https://doi.org/10.1051/mmnp/201510106
Published online 13 February 2015
  1. W. Alt, R. T. Tranquillo. Basic morphogenetic system modeling shape changes of migrating cells: how to explain fluctuating lamellipodial dynamics. J. Biol. Syst., 3(4):905–916, Dec. 1995. [CrossRef] [Google Scholar]
  2. A. R. Anderson, M. A. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol., 60(5):857–900, Sept. 1998. [Google Scholar]
  3. S. Arima, K. Nishiyama, T. Ko, Y. Arima, Y. Hakozaki, K. Sugihara, H. Koseki, Y. Uchijima, Y. Kurihara, H. Kurihara. Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development, 138(21):4763–4776, Nov. 2011. [CrossRef] [PubMed] [Google Scholar]
  4. S. Barreto, C. H. Clausen, C. M. Perrault, D.A. Fletcher, D. Lacroix. A multi-structural single cell model of force-induced interactions of cytoskeletal components. Biomaterials, 34(26):6119–6126, Aug. 2013. [CrossRef] [PubMed] [Google Scholar]
  5. A. L. Bauer, T. L. Jackson, Y. Jiang. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J., 92(9):3105–3121, May 2007. [CrossRef] [PubMed] [Google Scholar]
  6. K. J. Bayless, G. A. Johnson. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J. Vasc. Res., 48(5):369–385, Jan. 2011. [CrossRef] [PubMed] [Google Scholar]
  7. K. Bentley, C.A. Franco, A. Philippides, R. Blanco, M. Dierkes, V. Gebala, F. Stanchi, M. Jones, I.M. Aspalter, G. Cagna, S. Weström, L. Claesson-welsh, D. Vestweber, H. Gerhardt. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell Biol., 16:309–321, 2014. [Google Scholar]
  8. K. Bentley, H. Gerhardt, P. A. Bates. Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J. Theor. Biol., 250(1):25–36, Jan. 2008. [CrossRef] [PubMed] [Google Scholar]
  9. K. Bentley, M. Jones, B. Cruys. Predicting the future: towards symbiotic computational and experimental angiogenesis research. Exp. Cell Res., 319(9):1240–1246, May 2013. [CrossRef] [PubMed] [Google Scholar]
  10. K. Bentley, G. Mariggi, H. Gerhardt, P. A. Bates. Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput. Biol., 5(10):e1000549, Oct. 2009. [CrossRef] [PubMed] [Google Scholar]
  11. R. Blanco, H. Gerhardt. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med., 3(1):a006569, Jan. 2013. [CrossRef] [PubMed] [Google Scholar]
  12. S. Boas, M. Palm, P. Koolwijk, R. Merks. Computational modeling of angiogenesis: towards a multi-scale understanding of cell-cell and cell-matrix interactions. In C. A. Reinhart-King, editor, Mech. Chem. Signal. Angiogenes. SE - 8, volume 12 of Studies in Mechanobiology, Tissue Engineering and Biomaterials, pages 161–183. Springer Berlin Heidelberg, 2013. [Google Scholar]
  13. C. P. Brangwynne, F. C. MacKintosh, S. Kumar, N. A. Geisse, J. Talbot, L. Mahadevan, K. K. Parker, D. E. Ingber, and D. A. Weitz. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol., 173(5):733–741, June 2006. [Google Scholar]
  14. J. J. Bravo-Cordero, M. A. O. Magalhaes, R. J. Eddy, L. Hodgson, J. Condeelis. Functions of cofilin in cell locomotion and invasion. Nat. Rev. Mol. Cell Biol., 14(7):405–415, July 2013. [CrossRef] [PubMed] [Google Scholar]
  15. B. A. Bryan, P. A. D’Amore. What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell. Mol. Life Sci., 64(16):2053–2065, Aug. 2007. [CrossRef] [PubMed] [Google Scholar]
  16. B. A. Camley, Y. Zhao, B. Li, H. Levine, W.-J. Rappel. Periodic migration in a physical model of cells on micropatterns. Phys. Rev. Lett., 111(15):158102, 2013. [CrossRef] [PubMed] [Google Scholar]
  17. L. Cardamone, A. Laio, V. Torre, R. Shahapure, A. DeSimone. Cytoskeletal actin networks in motile cells are critically self-organized systems synchronized by mechanical interactions. Proc. Natl. Acad. Sci., 108(34):13978–13983, 2011. [CrossRef] [PubMed] [Google Scholar]
  18. A. Carlier, L. Geris, K. Bentley, G. Carmeliet, P. Carmeliet, H. Van Oosterwyck. MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells. PLoS Comput. Biol., 8(10):e1002724, Jan. 2012. [CrossRef] [PubMed] [Google Scholar]
  19. P. Carmeliet, F. De Smet, S. Loges, M. Mazzone. Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat. Rev. Clin. Oncol., 6(6):315–326, June 2009. [CrossRef] [Google Scholar]
  20. P. Carmeliet, R. K. Jain. Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347):298–307, May 2011. [CrossRef] [PubMed] [Google Scholar]
  21. J. C. Chappell, D. M. Wiley, V. L. Bautch. Regulation of blood vessel sprouting. Semin. Cell Dev. Biol., 22(9):1005–1011, Dec. 2011. [CrossRef] [PubMed] [Google Scholar]
  22. S. Checa, P. J. Prendergast. A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng., 37(1):129–145, Jan. 2009. [CrossRef] [PubMed] [Google Scholar]
  23. C. S. Chen. Mechanotransduction - a field pulling together? J. Cell Sci., 121(Pt 20):3285–3292, Oct. 2008. [CrossRef] [PubMed] [Google Scholar]
  24. Q. Chi, T. Yin, H. Gregersen, X. Deng, Y. Fan, J. Zhao, D. Liao, G. Wang. Rear actomyosin contractility-driven directional cell migration in three- dimensional matrices: a mechano- chemical coupling mechanism. J. R. Soc. Interface, 11(95):20131072, 2014. [CrossRef] [PubMed] [Google Scholar]
  25. C. L. E. Clainche, M.-F. Carlier. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev., 88(2):489–513, 2008. [CrossRef] [PubMed] [Google Scholar]
  26. V. L. Cross, Y. Zheng, N. Won Choi, S. S. Verbridge, B. a. Sutermaster, L. J. Bonassar, C. Fischbach, A. D. Stroock. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials, 31(33):8596–8607, Nov. 2010. [CrossRef] [PubMed] [Google Scholar]
  27. G. Danuser, J. Allard, A. Mogilner. Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu. Rev. Cell Dev. Biol., 29:501–528, Jan. 2013. [CrossRef] [PubMed] [Google Scholar]
  28. A. Das, D. Lauffenburger, H. Asada, R. D. Kamm. A hybrid continuum-discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting. Philos. Trans. R. Soc. A, 368:2937–2960, June 2010. [CrossRef] [Google Scholar]
  29. J. T. Daub, R. M. H. Merks. A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull. Math. Biol., 75(8):1377–1399, Aug. 2013. [Google Scholar]
  30. G. E. Davis, D. R. Senger. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res., 97(11):1093–1107, Nov. 2005. [CrossRef] [PubMed] [Google Scholar]
  31. A. T. Dawes, L. Edelstein-Keshet. Phosphoinositides and Rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophys. J., 92(3):744–768, Mar. 2007. [CrossRef] [PubMed] [Google Scholar]
  32. F. De Smet, I. Segura, K. De Bock, P. J. Hohensinner, P. Carmeliet. Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler. Thromb. Vasc. Biol., 29(5):639–649, May 2009. [CrossRef] [PubMed] [Google Scholar]
  33. E. Dejana. Endothelial cell-cell junctions: happy together. Nat. Rev. Mol. Cell Biol., 5(4):261–270, Apr. 2004. [CrossRef] [PubMed] [Google Scholar]
  34. E. Dejana, E. Tournier-Lasserve, B. M. Weinstein. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell, 16(2):209–221, Feb. 2009. [CrossRef] [PubMed] [Google Scholar]
  35. J. A. Ditlev, N. M. Vacanti, I. L. Novak, L. M. Loew. An open model of actin dendritic nucleation. Biophys. J., 96(9):3529–3542, May 2009. [CrossRef] [PubMed] [Google Scholar]
  36. R. Dominguez. Structural insights into de novo actin polymerization. Curr. Opin. Struct. Biol., 20(2):217–225, Apr. 2010. [CrossRef] [PubMed] [Google Scholar]
  37. L. T. Edgar, S. C. Sibole, C. J. Underwood, J. E. Guilkey, J. A. Weiss. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation. Comput. Methods Biomech. Biomed. Engin., 16(7):790–801, 2013. [CrossRef] [PubMed] [Google Scholar]
  38. L. T. Edgar, C. J. Underwood, J. E. Guilkey, J. B. Hoying, J. A. Weiss. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS One, 9(1):e85178, Jan. 2014. [CrossRef] [PubMed] [Google Scholar]
  39. H. M. Eilken, R. H. Adams. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr. Opin. Cell Biol., 22(5):617–625, Oct. 2010. [CrossRef] [PubMed] [Google Scholar]
  40. R. S. Fischer, M. Gardel, X. Ma, R. S. Adelstein, C. M. Waterman. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr. Biol., 19(3):260–265, Feb. 2009. [CrossRef] [PubMed] [Google Scholar]
  41. C. Franco, T. Tzvetkova-Chevolleau, A. Stéphanou. On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach. Math. Model. Nat. Phenom., 5(1):56–83, Feb. 2010. [CrossRef] [EDP Sciences] [Google Scholar]
  42. M. L. Gardel, I. C. Schneider, Y. Aratyn-Schaus, C. M. Waterman. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol., 26:315–333, Jan. 2010. [CrossRef] [PubMed] [Google Scholar]
  43. I. Geudens, H. Gerhardt. Coordinating cell behaviour during blood vessel formation. Development, 138(21):4569–4583, Nov. 2011. [CrossRef] [PubMed] [Google Scholar]
  44. R. D. Goldman, M. M. Cleland, S. N. P. Murthy, S. Mahammad, E. R. Kuczmarski. Inroads into the structure and function of intermediate filament networks. J. Struct. Biol., 177(1):14–23, Jan. 2012. [CrossRef] [PubMed] [Google Scholar]
  45. S. J. Grainger, A. J. Putnam. Mechanical and chemical signaling in angiogenesis. In C. A. Reinhart-King, editor, Mech. Chem. Signal. Angiogenes., volume 12 of Studies in Mechanobiology, Tissue Engineering and Biomaterials, pages 185–209. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. [Google Scholar]
  46. F. Graner, J. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended potts model. Phys. Rev. Lett., 69(13):2013–2016, 1992. [CrossRef] [PubMed] [Google Scholar]
  47. H. P. Grimm, A. B. Verkhovsky, A. Mogilner, J.-J. Meister. Analysis of actin dynamics at the leading edge of crawling cells : implications for the shape of keratocyte lamellipodia. Eur. Biophys. J., 32:563–577, 2003. [CrossRef] [PubMed] [Google Scholar]
  48. S. J. Heasman, A. J. Ridley. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol., 9(9):690–701, Sept. 2008. [CrossRef] [PubMed] [Google Scholar]
  49. M. Herant, M. Dembo. Cytopede: a three-dimensional tool for modeling cell motility on a flat surface. J. Comput. Biol., 17(12):1639–1677, 2010. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  50. M. Herant, M. Dembo. Form and function in cell motility: from fibroblasts to keratocytes. Biophys. J., 98(8):1408–1417, 2010. [CrossRef] [PubMed] [Google Scholar]
  51. H. Herrmann, S. V. Strelkov, P. Burkhard, U. Aebi. Intermediate filaments : primary determinants of cell architecture and plasticity. J. Clin. Invest., 119(7):1772–1783, 2009. [CrossRef] [PubMed] [Google Scholar]
  52. C. Hetheridge, A. N. Scott, R. K. Swain, J. W. Copeland, H. N. Higgs, R. Bicknell, H. Mellor. The formin FMNL3 is a cytoskeletal regulator of angiogenesis. J. Cell Sci., 125(Pt 6):1420–1428, Mar. 2012. [CrossRef] [PubMed] [Google Scholar]
  53. A. C. Hielscher, S. Gerecht. Engineering approaches for investigating tumor angiogenesis: exploiting the role of the extracellular matrix. Cancer Res., 72(23):6089–6096, Dec. 2012. [CrossRef] [PubMed] [Google Scholar]
  54. B. D. Hoffman, C. Grashoff, M. A. Schwartz. Dynamic molecular processes mediate cellular mechanotransduction. Nature, 475(7356):316–323, July 2011. [CrossRef] [PubMed] [Google Scholar]
  55. W. R. Holmes, L. Edelstein-Keshet. A comparison of computational models for eukaryotic cell shape and motility. PLoS Comput. Biol., 8(12):e1002793, Jan. 2012. [CrossRef] [PubMed] [Google Scholar]
  56. P. Hotulainen, P. Lappalainen. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol., 173(3):383–394, May 2006. [CrossRef] [PubMed] [Google Scholar]
  57. H. Hutchings, N. Ortega, J. Plouët. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J., 17(11):1520–1522, Aug. 2003. [PubMed] [Google Scholar]
  58. S. Huveneers, E. H. J. Danen. Adhesion signaling - crosstalk between integrins, Src and Rho. J. Cell Sci., 122(Pt 8):1059–1069, Apr. 2009. [CrossRef] [PubMed] [Google Scholar]
  59. D. E. Ingber. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res., 91(10):877–887, Nov. 2002. [CrossRef] [PubMed] [Google Scholar]
  60. D. E. Ingber. Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. Mol. Biol., 97(2-3):163–179, Jan. 2008. [CrossRef] [PubMed] [Google Scholar]
  61. T. Jackson, X. Zheng. A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis. Bull. Math. Biol., 72(4):830–868, May 2010. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  62. C. R. Jacobs, H. Huang, R. Y. Kwon. Introduction to cell mechanics and mechanobiology. Garland Science, 2012. [Google Scholar]
  63. H. V. Jain, T. L. Jackson. A hybrid model of the role of VEGF binding in endothelial cell migration and capillary formation. Front. Oncol., 3:102, Jan. 2013. [PubMed] [Google Scholar]
  64. L. Jakobsson, C. A. Franco, K. Bentley, R. T. Collins, B. Ponsioen, I. M. Aspalter, I. Rosewell, M. Busse, G. Thurston, A. Medvinsky, S. Schulte-Merker, H. Gerhardt. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol., 12(10):943–953, Oct. 2010. [CrossRef] [PubMed] [Google Scholar]
  65. A. Jilkine, A. F. M. Marée, L. Edelstein-Keshet. Mathematical model for spatial segregation of the Rho-family GTPases based on inhibitory crosstalk. Bull. Math. Biol., 69(6):1943–1978, Aug. 2007. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  66. E. D. Karagiannis, A. S. Popel. Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J. Theor. Biol., 238(1):124–145, Jan. 2006. [CrossRef] [PubMed] [Google Scholar]
  67. M.-C. Kim, C. Kim, L. Wood, D. Neal, R. D. Kamm, H. H. Asada. Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix. Integr. Biol., 4(11):1386–1397, Nov. 2012. [CrossRef] [Google Scholar]
  68. M.-C. Kim, D. M. Neal, R. D. Kamm, H. H. Asada. Dynamic modeling of cell migration and spreading behaviors on fibronectin coated planar substrates and micropatterned geometries. PLoS Comput. Biol., 9(2):e1002926, Jan. 2013. [CrossRef] [PubMed] [Google Scholar]
  69. A. Kishino, T. Yanagida. Force measurements by micromanipulation of a single actin filament by glass needles. Nature, 334(6177):74–76, 1988. [CrossRef] [PubMed] [Google Scholar]
  70. E. Kniazeva, A. J. Putnam. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. - Cell Physiol., 297(1):C179–C187, July 2009. [CrossRef] [Google Scholar]
  71. A. Köhn-Luque, W. de Back, J. Starruss, A. Mattiotti, A. Deutsch, J. M. Pérez-Pomares, M. A. Herrero. Early embryonic vascular patterning by matrix-mediated paracrine signalling: a mathematical model study. PLoS One, 6(9):e24175, Jan. 2011. [CrossRef] [PubMed] [Google Scholar]
  72. T. Korff, H. G. Augustin. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci., 112(Pt 19):3249–3258, Oct. 1999. [PubMed] [Google Scholar]
  73. L. Lamalice, B. F. Le, J. Huot. Endothelial cell migration during angiogenesis. Circ. Res., 100:782–794, Mar. 2007. [CrossRef] [PubMed] [Google Scholar]
  74. T. Lämmermann and M. Sixt. Mechanical modes of ’amoeboid’ cell migration. Curr. Opin. Cell Biol., 21(5):636–644, Oct. 2009. [CrossRef] [PubMed] [Google Scholar]
  75. P.-F. Lee, Y. Bai, R. L. Smith, K. J. Bayless, a. T. Yeh. Angiogenic responses are enhanced in mechanically and microscopically characterized, microbial transglutaminase crosslinked collagen matrices with increased stiffness. Acta Biomater., 9(7):7178–7190, July 2013. [CrossRef] [PubMed] [Google Scholar]
  76. C. A. Lemmon, L. H. Romer. A predictive model of cell traction forces based on cell geometry. Biophys. journal2, 99(9):L78–L80, 2010. [Google Scholar]
  77. G. Lemon, D. Howard, F. R. A. J. Rose, J. R. King. Individual-based modelling of angiogenesis inside three-dimensional porous biomaterials. BioSystems, 103(3):372–83, Mar. 2011. [CrossRef] [PubMed] [Google Scholar]
  78. G. Liu, A. A. Qutub, P. Vempati, F. Mac Gabhann, A. S. Popel. Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor. Biol. Med. Model., 8:6, Jan. 2011. [CrossRef] [PubMed] [Google Scholar]
  79. A. W. Mahoney, B. G. Smith, N. S. Flann, G. J. Podgorski. Discovering novel cancer therapies: A computational modeling and search approach. 2008 IEEE Symp. Comput. Intell. Bioinforma. Comput. Biol., pages 233–240, Sept. 2008. [Google Scholar]
  80. A. Mammoto, K. M. Connor, T. Mammoto, C. W. Yung, D. Huh, C. M. Aderman, G. Mostoslavsky, L. E. H. Smith, D. E. Ingber. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature, 457(7233):1103–1108, Feb. 2009. [CrossRef] [PubMed] [Google Scholar]
  81. D. Manoussaki, S. R. Lubkin, R. B. Vernon, J. D. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor., 44(3-4):271–282, 1996. [CrossRef] [PubMed] [Google Scholar]
  82. A. F. M. Marée, V. A. Grieneisen, L. Edelstein-Keshet. How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Comput. Biol., 8(3):e1002402, Jan. 2012. [CrossRef] [PubMed] [Google Scholar]
  83. A. F. M. Marée, A. Jilkine, A. Dawes, V. A. Grieneisen, L. Edelstein-Keshet. Polarization and movement of keratocytes: a multiscale modelling approach. Bull. Math. Biol., 68(5):1169–1211, July 2006. [CrossRef] [PubMed] [Google Scholar]
  84. B. N. Mason, A. Starchenko, R. M. Williams, L. J. Bonassar, C. a. Reinhart-King. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater., 9(1):4635–4644, Jan. 2013. [CrossRef] [PubMed] [Google Scholar]
  85. R. M. H. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman, J. A. Glazier. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289(1):44–54, Jan. 2006. [CrossRef] [PubMed] [Google Scholar]
  86. F. Milde, M. Bergdorf, P. Koumoutsakos. A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys. J., 95(7):3146–3160, Oct. 2008. [CrossRef] [PubMed] [Google Scholar]
  87. A. Mogilner, L. Edelstein-keshet. Regulation of actin dynamics in rapidly moving cells : a quantitative analysis. Biophys. J., 83(3):1237–1258, 2002. [CrossRef] [PubMed] [Google Scholar]
  88. J. D. Murray. Mathematical biology II: spatial models and biomedical applications. Springer, Berlin, 3 edition, 2003. [Google Scholar]
  89. P. Naumanen, P. Lappalainen, P. Hotulainen. Mechanisms of actin stress fibre assembly. J. Microsc., 231(3):446–454, Sept. 2008. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  90. S. Niland, J. A. Eble. Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. J. Oncol., 2012:125278, Jan. 2012. [Google Scholar]
  91. P. Nyberg, L. Xie, R. Kalluri. Endogenous nhibitors of angiogenesis. Cancer Res., 65(10):3967–3979, 2005. [CrossRef] [PubMed] [Google Scholar]
  92. G. Odell, G. Oster, P. Alberch, B. Burnside. The mechanical basis of morphogenesis. Dev. Biol., 85(2):446–462, July 1981. [CrossRef] [PubMed] [Google Scholar]
  93. T. Odenthal, B. Smeets, P. Van Liedekerke, E. Tijskens, H. Van Oosterwyck, H. Ramon. Analysis of initial cell spreading using mechanistic contact formulations for a deformable cell model. PLoS Comput. Biol., 9(10):e1003267, Jan. 2013. [CrossRef] [PubMed] [Google Scholar]
  94. B. G. F. Oster, J. D. Murray, A. K. Harris. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol., 78:83–125, 1983. [PubMed] [Google Scholar]
  95. F. Otsuka, A. V. Finn, S. K. Yazdani, M. Nakano, F. D. Kolodgie, R. Virmani. The importance of the endothelium in atherothrombosis and coronary stenting. Nat. Rev. Cardiol., 9(8):439–453, Aug. 2012. [CrossRef] [PubMed] [Google Scholar]
  96. M. R. Owen, T. Alarcón, P. K. Maini, H. M. Byrne. Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol., 58(4-5):689–721, Apr. 2009. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  97. V. Peiffer, A. Gerisch, D. Vandepitte, H. Van Oosterwyck, L. Geris. A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech. Model. Mechanobiol., 10(3):383–395, June 2011. [CrossRef] [PubMed] [Google Scholar]
  98. S. M. Peirce, F. Mac Gabhann, V. L. Bautch. Integration of experimental and computational approaches to sprouting angiogenesis. Curr. Opin. Hematol., 19(3):184–191, 2012. [CrossRef] [PubMed] [Google Scholar]
  99. R. J. Petrie, N. Gavara, R. S. Chadwick, K. M. Yamada. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Biol., 197(3):439–455, Apr. 2012. [Google Scholar]
  100. M. J. Plank, B. D. Sleeman. A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math. Med. Biol., 20(2):135–181, June 2003. [CrossRef] [PubMed] [Google Scholar]
  101. M. J. Plank and B. D. Sleeman. Lattice and non-lattice models of tumour angiogenesis. Bull. Math. Biol., 66(6):1785–1819, Nov. 2004. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  102. T. D. Pollard. The cytoskeleton, cellular motility and the reductionist agenda. Nature, 422(6933):741–745, Apr. 2003. [CrossRef] [PubMed] [Google Scholar]
  103. P. P. Provenzano, P. J. Keely. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J. Cell Sci., 124(Pt 8):1195–1205, Apr. 2011. [CrossRef] [PubMed] [Google Scholar]
  104. A. A. Qutub, F. Mac Gabhann, E. D. Karagiannis, P. Vempati, A. S. Popel. Multiscale models of angiogenesis. IEEE Eng. Med. Biol. Mag., 28(2):14–31, 2009. [CrossRef] [Google Scholar]
  105. A. A. Qutub, A. S. Popel. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol., 3:13, Jan. 2009. [CrossRef] [PubMed] [Google Scholar]
  106. R. Rangarajan, M. H. Zaman. Modeling cell migration in 3D: Status and challenges. Cell Adh. Migr., 2(2):106–109, 2008. [CrossRef] [PubMed] [Google Scholar]
  107. B. Rubinstein, M. F. Fournier, K. Jacobson, A. B. Verkhovsky, A. Mogilner. Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys. J., 97(7):1853–1863, Oct. 2009. [CrossRef] [PubMed] [Google Scholar]
  108. B. Rubinstein, K. Jacobson, A. Mogilner. Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model. Simul., 3(2):413–439, Jan. 2005. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  109. J. E. Rundhaug. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med., 9(2):267–285, 2005. [CrossRef] [PubMed] [Google Scholar]
  110. D. R. Senger, C. A. Perruzzi, M. Streit, V. E. Koteliansky, A. R. de Fougerolles, M. Detmar. The α1β1 and α2β1 Integrins Provide Critical Support for Vascular Endothelial Growth Factor Signaling, Endothelial Cell Migration, and Tumor Angiogenesis. Am. J. Pathol., 160(1):195–204, Jan. 2002. [CrossRef] [PubMed] [Google Scholar]
  111. G. Serini, L. Napione, F. Bussolino. Integrins team up with tyrosine kinase receptors and plexins to control angiogenesis. Curr. Opin. Hematol., 15(3):235–242, May 2008. [CrossRef] [PubMed] [Google Scholar]
  112. D. Shao, H. Levine, W.-J. Rappel. Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc. Natl. Acad. Sci. U. S. A., 109(18):6851–6856, May 2012. [CrossRef] [PubMed] [Google Scholar]
  113. S. J. Shattil, C. Kim, M. H. Ginsberg. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol., 11(4):288–300, Apr. 2010. [CrossRef] [PubMed] [Google Scholar]
  114. A. Shirinifard, J. S. Gens, B. L. Zaitlen, N. J. Poplawski, M. Swat, J. a. Glazier. 3D multi-cell simulation of tumor growth and angiogenesis. PLoS One, 4(10):e7190, Jan. 2009. [CrossRef] [PubMed] [Google Scholar]
  115. Y.-T. Shiu, J. A. Weiss, J. B. Hoying, M. N. Iwamoto, I. S. Joung, C. T. Quam. The role of mechanical stresses in angiogenesis. Crit. Rev. Biomed. Eng., 33(5):431–510, Jan. 2005. [CrossRef] [PubMed] [Google Scholar]
  116. R. Silva, G. D’Amico, K. M. Hodivala-Dilke, L. E. Reynolds. Integrins: the keys to unlocking angiogenesis. Arterioscler. Thromb. Vasc. Biol., 28(10):1703–1713, Oct. 2008. [CrossRef] [PubMed] [Google Scholar]
  117. S.-T. Sit, E. Manser. Rho GTPases and their role in organizing the actin cytoskeleton. J. Cell Sci., 124(Pt 5):679–683, Mar. 2011. [CrossRef] [PubMed] [Google Scholar]
  118. M. Sixt. Cell migration: Fibroblasts find a new way to get ahead. J. Cell Biol., 197(3):347–349, Apr. 2012. [CrossRef] [PubMed] [Google Scholar]
  119. B. Sleeman, I. Wallis. Tumour induced angiogenesis as a reinforced random walk: Modelling capillary network formation without endothelial cell proliferation. Math. Comput. Model., 36(3):339–358, Aug. 2002. [CrossRef] [Google Scholar]
  120. P. R. Somanath, A. Ciocea, T. V. Byzova. Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem. Biophys., 53(2):53–64, Jan. 2009. [CrossRef] [PubMed] [Google Scholar]
  121. M. O. Stefanini, A. A. Qutub, F. Mac Gabhann, A. S. Popel. Computational models of VEGF-associated angiogenic processes in cancer. Math. Med. Biol., 29(1):85–94, Mar. 2012. [CrossRef] [PubMed] [Google Scholar]
  122. A. Stéphanou, E. Mylona, M. Chaplain, P. Tracqui. A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J. Theor. Biol., 253(4):701–716, Aug. 2008. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  123. M. W. Stewart. Vascular endothelial growth factor (VEGF) biochemistry and development of inhibitory drugs. Curr. Drug ther., 7(2):80–89, 2012. [CrossRef] [Google Scholar]
  124. C. L. Stokes, D. A. Lauffenburger, S. K. Williams. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci., 99 (Pt 2):419–430, June 1991. [PubMed] [Google Scholar]
  125. S.-c. Su, E. A. Mendoza, H.-i. Kwak, K. J. Bayless. Molecular profile of endothelial invasion of three-dimensional collagen matrices : insights into angiogenic sprout induction in wound healing. Am. J. Physiol., 295(5):C1215–C1229, 2008. [CrossRef] [Google Scholar]
  126. A. Szabó, A. Czirók. The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts. Math. Model. Nat. Phenom., 5(1):106–122, Jan. 2010. [Google Scholar]
  127. Y. L. Taber, Y. Shi, L. Yang, P. Bayly. A poroelastic model for cell crawling including mechanical coupling between cytoskeletal contraction and actin polymerization. J. Mech. Mater. Struct., 6(1-4):569–589, 2011. [CrossRef] [PubMed] [Google Scholar]
  128. M. Théry, M. Bornens. Cell shape and cell division. Curr. Opin. Cell Biol., 18(6):648–657, Dec. 2006. [CrossRef] [PubMed] [Google Scholar]
  129. S. Tong, F. Yuan. Numerical simulations of angiogenesis in the cornea. Microvasc. Res., 61(1):14–27, Jan. 2001. [CrossRef] [PubMed] [Google Scholar]
  130. R. D.M. Travasso, E. Corvera Poiré, M. Castro, J. C. Rodríguez-Manzaneque, J. C. Rodrguez-Manzaneque, A. Hernández-Machado. Tumor angiogenesis and vascular patterning: a mathematical model. PLoS One, 6(5):e19989, Jan. 2011. [CrossRef] [PubMed] [Google Scholar]
  131. R. van der Meel, M. H. Symons, R. Kudernatsch, R. J. Kok, R. M. Schiffelers, G. Storm, W. M. Gallagher, A. T. Byrne. The VEGF/Rho GTPase signalling pathway: a promising target for anti-angiogenic/anti-invasion therapy. Drug Discov. Today, 16(5-6):219–228, Mar. 2011. [CrossRef] [PubMed] [Google Scholar]
  132. V. W. M. van Hinsbergh, P. Koolwijk. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc. Res., 78(2):203–212, May 2008. [CrossRef] [PubMed] [Google Scholar]
  133. R. F. M. Van Oers, E. G. Rens, D. J. LaValley, C. A. Reinhart-King, R. M. H. Merks. Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput. Biol., 10(8):e1003774, Aug. 2014. [CrossRef] [PubMed] [Google Scholar]
  134. H. Van Oosterwyck. Computational mechanobiology: may the force be with you. J. Math. Biol., pages Epub ahead of print, DOI 10.1007/s00285–014–0795–6, May 2014. [Google Scholar]
  135. B. Vanderlei, J. J. Feng, L. Edelstein-Keshet. A computational model of cell polarization and motility coupling mechanics and biochemistry. Multiscale Model. Simul., 9(4):1420–1443, 2010. [Google Scholar]
  136. M. Vicente-Manzanares, C. K. Choi, A. R. Horwitz. Integrins in cell migration - the actin connection. J. Cell Sci., 122(Pt 2):199–206, Apr. 2009. [CrossRef] [PubMed] [Google Scholar]
  137. M. Vicente-Manzanares, X. Ma, R. S. Adelstein, A. R. Horwitz. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol., 10(11):778–790, Nov. 2009. [CrossRef] [PubMed] [Google Scholar]
  138. M. Vicente-Manzanares, D. J. Webb, A. R. Horwitz. Cell migration at a glance. J. Cell Sci., 118(Pt 21):4917–4919, Nov. 2005. [CrossRef] [PubMed] [Google Scholar]
  139. R. H. Wade, A. A. Hyman. Microtubule structure and dynamics. Curr. Opin. Cell Biol., 9(1):12–17, 1997. [CrossRef] [PubMed] [Google Scholar]
  140. N. Wang, J. D. Tytell, D. E. Ingber. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol., 10(1):75–82, 2009. [Google Scholar]
  141. E. S. Welf, J. M. Haugh. Signaling pathways that control cell migration: models and analysis. Wiley Interdiscip. Rev. Syst. Biol. Medicine, 3(2):231–240, 2011. [CrossRef] [Google Scholar]
  142. E. S. Welf, H. E. Johnson, J. M. Haugh. Bidirectional coupling between integrin-mediated signaling and actomyosin mechanics explains matrix-dependent intermittency of leading-edge motility. Mol. Biol. Cell, 24(24):3945–3955, Dec. 2013. [CrossRef] [PubMed] [Google Scholar]
  143. B. Wojciak-Stothard, A. J. Ridley. Rho GTPases and the regulation of endothelial permeability. Vascul. Pharmacol., 39(4-5):187–199, Nov. 2002. [CrossRef] [PubMed] [Google Scholar]
  144. C. W. Wolgemuth, J. Stajic, A. Mogilner. Redundant mechanisms for stable cell locomotion revealed by minimal models. Biophys. J., 101(3):545–553, Aug. 2011. [CrossRef] [PubMed] [Google Scholar]
  145. C. W. Wolgemuth, M. Zajac. The moving boundary node method: a level set-based, finite volume algorithm with applications to cell motility. J. Comput. Phys., 229(19):7287–7308, Sept. 2010. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  146. L. Wood, R. Kamm, H. Asada. Stochastic modeling and identification of emergent behaviors of an Endothelial Cell population in angiogenic pattern formation. Int. J. Rob. Res., 30(6):659–677, Mar. 2011. [CrossRef] [Google Scholar]
  147. L. Yan, M. A. Moses, S. Huang, D. E. Ingber. Adhesion-dependent control of matrix metalloproteinase-2 activation in human capillary endothelial cells. J. Cell Sci., 113(Pt 22):3979–3987, Nov. 2000. [PubMed] [Google Scholar]
  148. A. L. Zajac, D. E. Discher. Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling. Curr. Opin. Cell Biol., 20(6):609–615, Dec. 2008. [CrossRef] [PubMed] [Google Scholar]
  149. G. Zeng, S. M. Taylor, J. R. McColm, N. C. Kappas, J. B. Kearney, L. H. Williams, M. E. Hartnett, V. L. Bautch. Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood, 109(4):1345–1352, Feb. 2007. [CrossRef] [PubMed] [Google Scholar]
  150. F. Ziebert, I. S. Aranson. Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells. PLoS One, 8(5):e64511, Jan. 2013. [Google Scholar]
  151. F. Ziebert, S. Swaminathan, I. S. Aranson. Model for self-polarization and motility of keratocyte fragments. J. R. Soc. Interface, 9(70):1084–1092, May 2012. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.