Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 2, 2015
Page(s) 1 - 4
Published online 02 April 2015
  1. D. Ahmed, S. Petrovski. Time dependent diffusion as a mean field counterpart of Lévy type random walk. Math. Mod. Nat. Phen., 11 (2015) 5–26. [CrossRef] [EDP Sciences] [Google Scholar]
  2. P. Carmona, D. Franco. Impact of dispersal on the total population size, constancy and persistence of two-patch spatially-separated populations. Math. Mod. Nat. Phen., 11 (2015) 45–55. [CrossRef] [EDP Sciences] [Google Scholar]
  3. M. De Jager, F. Weissing, P. Herman, B. Nolet, J. vande Koppel. Response to comment on Lévy walks evolve through interaction between movement and environmental complexity. Science, 335 (2012) 918. [CrossRef] [Google Scholar]
  4. R. Eftimie, A. Coulier. The role of avoidance and learning behaviours on the formation and movement of biological aggregations. Math. Mod. Nat. Phen., 11 (2015) 27–44. [CrossRef] [EDP Sciences] [Google Scholar]
  5. A. N. Gorban. Selection Theorem for Systems with Inheritance. Math. Model. Nat. Phenom., 2(4) (2007), 1–45. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. D. Grunbaum. The logic of ecological patchiness. Interface Focus, 2 (2012) 150–155. [CrossRef] [PubMed] [Google Scholar]
  7. A Hastings, S Petrovskii, A Morozov. Spatial ecology across scales. Biol. Lett., 7 (2011) 163–165 [CrossRef] [PubMed] [Google Scholar]
  8. N. T. Hieu, N. H. Du, P. Auger, N. H. Dang. Dynamical behavior of a stochastic SIRS epidemic model. Math. Mod. Nat. Phen., 11 (2015) 56–73. [CrossRef] [EDP Sciences] [Google Scholar]
  9. J. Hofbauer, K. Sigmund. Evolutionary game dynamics. Bull. (New Series) American Math. Soc. 40(4) (2003), 479–519. [CrossRef] [Google Scholar]
  10. O. Kuzenkov, E. Ryabova. Variational principle for self-replicating systems. Math. Mod. Nat. Phen., 11 (2015) 115–128. [CrossRef] [EDP Sciences] [Google Scholar]
  11. S.E. Kingsland. Modeling nature: Episodes in the history of population ecology. 2d ed. Chicago: Univ. of Chicago Press, 1995. [Google Scholar]
  12. H. Malchow, S.V. Petrovskii, E. Venturino. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, Simulations. Chapman & Hall / CRC Press, 2008. [Google Scholar]
  13. A.Y. Morozov. Revealing the role of predator-dependent disease transmission in the epidemiology of a wildlife infection: a model study. Theor. Ecol., 5 (2012) 517–532. [CrossRef] [Google Scholar]
  14. J. K. Parrish, S. V. Viscido, D. Grunbaum. Self-organized fish schools: An examination of emergent properties. Bioll. Bull., 202 (2002), 296–305. [CrossRef] [PubMed] [Google Scholar]
  15. G. Parker, J. M. Smith. Optimality theory in evolutionary biology. Nature, 348 (1990), 27–33. [CrossRef] [Google Scholar]
  16. S. Petrovskii, A. Morozov. Dispersal in a statistically structured population. Am. Nat., 17 (2008) 278–289. [Google Scholar]
  17. S. Petrovskii, N. Petrovskaya, D. Bearup. Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization and networks. Phys. Rev., 11 (2014) 467–525. [Google Scholar]
  18. L. Ryashko, I. Bashkirtseva. Stochastic Sensitivity Analysis and Control for Ecological Model with the Allee Effect. Math. Mod. Nat. Phen., 11 (2015) 129–140 . [Google Scholar]
  19. C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, Comp. Graph., 21 (1987), 25–34. [CrossRef] [Google Scholar]
  20. Y. Sekerci, S. Petrovskii. Mathematical Modelling of Spatiotemporal Dynamics of Oxygen in a Plankton System. Math. Mod. Nat. Phen., 11 (2015) 96–114 . [CrossRef] [EDP Sciences] [Google Scholar]
  21. M. Sen, M. Banerjee, A. Morozov. A generalist predator regulating spread of a wildlife disease: exploring two infection transmission scenarios. Math. Mod. Nat. Phen., 11 (2015) 74–95. [CrossRef] [EDP Sciences] [Google Scholar]
  22. N. Stollenwerk, L. Mateus, F. Rocha, U. Skwara, P. Ghaffari, M. Aguiar. Prediction and predictability in population biology: noise and chaos. Math. Mod. Nat. Phen., 11 (2015) 141–164. [Google Scholar]
  23. E. Venturino. Ecoepidemiology: a more comprehensive view of population interactions. Math. Mod. Nat. Phen., 2015 (in press). [Google Scholar]
  24. G. Viswanathan, V. Afanasyev, S. Buldryrev, S. Havlin, M. da Luz, E. Raposo, H. Stanley. Lévy flights in random searches. Phys. A, 282 (2000) 1–12. [CrossRef] [Google Scholar]
  25. E. C. Zeeman. Population dynamics from game theory. in Global theory of dynamical systems. Lecture notes in mathematics. vol. 819. Springer Berlin Heidelberg, 1980. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.