Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 2, 2015
Ecology
Page(s) 5 - 26
DOI https://doi.org/10.1051/mmnp/201510202
Published online 02 April 2015
  1. D. Ahmed. Stochastic and Mean field approaches for trap count modelling and interpretation. PhD thesis, Leicester University, (2014). [Google Scholar]
  2. R. Balescu. Equilibrium and Non-equilibrium Statistical Mechanics. New York: John Wiley, 1975. [Google Scholar]
  3. F. Bartumeus, J. Catalan, G. Viswanathan, E. Raposo, M. da Luz. The influence of turning angles on the success of non-oriented animal searches. J. Theor. Biol., 252 (2008) 43–55. [CrossRef] [PubMed] [Google Scholar]
  4. B. Berkowitz, H. Scher. Theory of anomalous chemical transport in random fracture networks. Phys. Rev. E, 57 (1998) 5858–5869. [CrossRef] [Google Scholar]
  5. I. Blumen, J. Klafter. Drude approach to anomalous diffusion: Application to richardson dispersion in turbulent flows. Europhys. Lett., 47 (1999) 152–157. [CrossRef] [Google Scholar]
  6. J. Bouchaud, A. Georges. Anomalous diffusion in disordered media: Statistical mechanics, models and physical applications. Phys. Rep., 195 (1990) 127–293. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Bovet, S. Benhamou. Spatial analysis of animals movements using a correlated random walk model. J. Theor. Biol., 131 (1988) 419–433. [CrossRef] [Google Scholar]
  8. K. Burnham, D. Anderson. Model selection and multimodel inference: a practical information theoretical approach. Springer, 2002. [Google Scholar]
  9. S. Cantrell, C. Cosner. Spatial ecology via reaction and diffusion equations. Wiley John and Sons, 2003. [Google Scholar]
  10. J. Q. Chambers, N. Higuchi, J. P. Schimel. Ancient trees in amazonia. Nature, 391 (1998) 135–136. [CrossRef] [Google Scholar]
  11. E. Charnov. Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology. Oxford Univ. Press, 1993. [Google Scholar]
  12. E. Codling, M. Plank, S. Benhamou. Random walk models in biology. J. R. Soc. Interface, 5 (2008) 813–834. [CrossRef] [PubMed] [Google Scholar]
  13. S. Coscoy, E. Huguet, F. Amblard. Statistical analysis of sets of random walks: how to resolve their generating mechanism. Bull. Math. Biol., 69 (2007) 2467–2492. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. J. Crank. The mathematics of diffusion. Oxford Univ. Press, 2nd edn., 1975. [Google Scholar]
  15. P. Davis, P. Rabinowitz. Methods of numerical integration. New York: Academic Press, 1975. [Google Scholar]
  16. M. De Jager, F. Weissing, P. Herman, B. Nolet, J. vande Koppel. Response to comment on Lévy walks evolve through interaction between movement and environmental complexity. Science, 335 (2012) 918. [CrossRef] [Google Scholar]
  17. J. Dennis, D. Gay, R. Walsh. An adaptive non-linear least-squares algorithm. ACM Trans. Math. Soft., 7 (1981) 348–368. [CrossRef] [Google Scholar]
  18. J. Durbin. Testing for serial correlation in least squares regression. Biometrika, 37 (1950) 409–428. [MathSciNet] [PubMed] [Google Scholar]
  19. N. Embleton, N. Petrovskaya. A novel approach to evaluation of pest insect abundance in the presence of noise. Bull. Math. Biol., 76 (2014) 718–743. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. A. Fick. Ueber diffusion. Annalen der Physik, 170 (1855) 59–86. [Google Scholar]
  21. R. Fisher. The wave of advance of advantageous genes. Annals of Eugenics, 7 (1937) 355–369. [Google Scholar]
  22. L. Giuggioli, F. Sevilla, V. Kenkre. A generalized master equation approach to modelling anomalous transport in animal movement. J. Phys., 42 (2009) 434–444. [Google Scholar]
  23. N. Gotelli, A. Ellison. A primer of ecological statistics. Sunderland: Sinauer Associates, 2004. [Google Scholar]
  24. J. P. Grime, R. Hunt. Relative growth-rate: its range and adaptive significance in a local flora. Ecology, 63 (1975) 393–422. [CrossRef] [Google Scholar]
  25. R. S. Grimm, V. Individual based modelling and Ecology. Princeton Univ. Press, 2005. [Google Scholar]
  26. R. Grimmet, D. Stirzaker. Probability and random processes. Oxford Univ. Press, 2001. [Google Scholar]
  27. E. Holmes, M. Lewis, J. Banks, R. Veit. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology, 75 (1994) 17–29. [CrossRef] [Google Scholar]
  28. V. Jansen, A. Mashanova, S. Petrovskii. Model selection and animal movement: comment on Lévy walks evolve through interaction between movement and environmental complexity. Science, 335 (2012) 918. [CrossRef] [Google Scholar]
  29. F. Jopp, H. Reuter. Dispersal of carabid beetles: emergence of distribution patterns. Ecol. Model., 186 (2005) 389–405. [Google Scholar]
  30. P. Kareiva. Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments. Oecologia, 57 (1983) 322–327. [CrossRef] [PubMed] [Google Scholar]
  31. P. Kareiva, N. Shigesada. Analyzing insect movement as a correlated random walk. Oecologia, 56 (1983) 234–238. [Google Scholar]
  32. R. Kawai. Continuous time modeling of random searches: Statistical properties and inference. J. Phys. A: Math. Theor., 45 (2012) 235004. [CrossRef] [Google Scholar]
  33. M. Kot, M. Lewis, P. Van der Driessche. Dispersal data and the spread of invading organisms. Ecology, 77 (1996) 2027–2042. [CrossRef] [Google Scholar]
  34. H. Malchow, S. Petrovskii, E. Venturino. Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulations. Chapman & Hall/CRC, 2008. [Google Scholar]
  35. R. Metzler, J. Klafter. The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339 (2000) 1–77. [NASA ADS] [CrossRef] [Google Scholar]
  36. R. Metzler, J. Klafter. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen., 37 (2004) 161–208. [Google Scholar]
  37. E. Montroll, G. Weiss. Random walks on lattices. J. Math. Phys., 6 (1965) 167–181. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  38. J. Morales, D. Haydon, J. Frair, K. Holsinger, J. Fryxell. Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology, 85 (2004) 2436–45. [CrossRef] [Google Scholar]
  39. N. Newlands, M. Lutcavage, T. Pitcher. Analysis of foraging movements of atlantic blue fin tuna (thunnus thynnus): individuals move with two modes of searching. Popul. Ecol., 46 (2004) 39–53. [CrossRef] [Google Scholar]
  40. A. Okubo. Diffusion and ecological problems. Springer, New York, 1980. [Google Scholar]
  41. A. Okubo, H. Chiang. An analysis of the kinematics of swarming of anarete pritchardi kim (diptera: Cecidomyiidae). Res. Popul. Ecol., 16 (1974) 1–42. [CrossRef] [Google Scholar]
  42. A. Okubo, S. Levin. Diffusion and ecological problems: modern perspectives. Springer, New York, 2001. [Google Scholar]
  43. A. Okubo, S. Levin. Some examples of animal diffusion. Springer-Verlag, 2001. [Google Scholar]
  44. J. Patrick. Computational fluid dynamics. Hermosa Publishers, 1976. [Google Scholar]
  45. N. Petrovskaya, S. Petrovskii, A. Murchie. Challenges of ecological monitoring: estimating population abundance from sparse trap counts. J. R. Soc. Interface, 9 (2011) 420–435. [CrossRef] [PubMed] [Google Scholar]
  46. S. Petrovskii, D. Ahmed, R. Blackshaw. Estimating insect population density. Ecol. Complexity, 10 (2012) 69–82. [Google Scholar]
  47. S. Petrovskii, L. Brian. Exactly solvable models of biological invasion. Chapman and Hall/CRC, 2006. [Google Scholar]
  48. S. Petrovskii, A. Mashanova, V. Jansen. Variation in individual walking behavior creates the impression of a Lévy flight. Proc. Natl. Acad. Sci. USA., 108 (2011) 8704–8707. [CrossRef] [Google Scholar]
  49. S. Petrovskii, A. Morozov. Dispersal in a statistically structured population. Am. Nat., 173 (2008) 278–289. [Google Scholar]
  50. S. Petrovskii, N. Petrovskaya, D. Bearup. Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization and networks. Phys. Rev., 11 (2014) 467–525. [Google Scholar]
  51. M. Plank, E. Codling. Sampling rate and misidentification of Lévy and non-Lévy movement paths. Ecology, 90 (2009) 3546–3553. [CrossRef] [PubMed] [Google Scholar]
  52. G. Radons, R. Klages, I. Sokolov. Anomalous transport. Berlin: Wiley-VCH, 2008. [Google Scholar]
  53. A. Reynolds. Scale-free animal movement patterns: Lévy walks outperform fractional Brownian motions and fractional Lévy motions in random search scenarios. J. Phys. A: Math. Theor., 42 (2009) 434006. [CrossRef] [MathSciNet] [Google Scholar]
  54. A. Reynolds. Bridging the gulf between correlated random walks and Lévy walks: autocorrelation as a source of Lévy walk movement patterns. J. R. Soc. Interface, 7 (2010) 1753–1758. [CrossRef] [PubMed] [Google Scholar]
  55. P. Richards. The tropical rainforest. Cambridge Univ. Press, 2nd edn, 1996. [Google Scholar]
  56. L. Richardson. Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. London: Series A, 110 (1926) 709–737. [Google Scholar]
  57. H. Scher, M. Lax. Stochastic transport in a disordered solid. Phys. Rev. B, (1973) 4491–4502. [Google Scholar]
  58. H. Scher, E. Montroll. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B, 12 (1975) 2455–2477. [CrossRef] [Google Scholar]
  59. H. Scher, M. Shlesinger, J. Bendler. Time-scale invariance in transport and relaxation. Phys. Today, 44 (1991) 26–34. [CrossRef] [Google Scholar]
  60. N. Shigesada, K. Kawasaki. Biological invasions: theory and practice. Oxford Univ. Press, 1997. [Google Scholar]
  61. N. Shigesada, K. Kawasaki. Invasion and the range expansion of species: effects of long distance dispersal. Dispersal Ecology, (2002) 350–373. [Google Scholar]
  62. M. Shlesinger. Asymptotic solutions of continuous-time random walks. J. Stat. Phys., 10 (1974) 421–434. [CrossRef] [Google Scholar]
  63. M. Shlesinger. Random searching. J. Phys. A: Math. Theor., 42 (2009) 434001. [CrossRef] [Google Scholar]
  64. J. Skellem. Random dispersal in theoretical populations. Biometrika, 38 (1951) 196–218. [Google Scholar]
  65. G. Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods (Oxford Applied Mathematics & Computing Science Series). Oxford Univ. Press, 1986. [Google Scholar]
  66. S. Stearns. The Evolution of Life Histories. Oxford Univ. Press, 1992. [Google Scholar]
  67. V. Stern. Economic thresholds. Entomol., 18 (1973) 259–280. [CrossRef] [Google Scholar]
  68. W. Strauss. Partial differential equations: An introduction. John Wiley and Sons, 2008. [Google Scholar]
  69. P. Tilles, S. Petrovskii. Statistical mechanics of animal movement: Animal’s decision making can result in super-diffusive spread. Ecol. Complexity, (2015). In Press, http://dx.doi.org/10.1016/j.ecocom.2015.02.006. [Google Scholar]
  70. D. Tilman. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton Univ. Press, 1988. [Google Scholar]
  71. P. Turchin. Quantitative analysis of movement: measuring and modelling population redistribution in animals and plants. Sinauer Associates, 1998. [Google Scholar]
  72. G. Viswanathan, V. Afanasyev, S. Buldryrev, S. Havlin, M. da Luz, E. Raposo, H. Stanley. Lévy flights in random searches. Phys. A, 282 (2000) 1–12. [CrossRef] [Google Scholar]
  73. G. Viswanathan, V. Afanasyev, S. Buldryrev, S. Havlin, R. da Luz, M., H. Stanley. The Physics of Foraging. Cambridge Univ. Press, 2011. [Google Scholar]
  74. E. Weeks, J. Urbach, H. Swinney. Anomalous diffusion in asymmetric random walks with a quasi-geostrophic flow example. Phys. D: Nonlinear Phen., 97 (1996) 291–310. [CrossRef] [Google Scholar]
  75. G. Weiss. Aspects and applications of the random walk. North Holland Press, 1994. [Google Scholar]
  76. G. Weiss, R. Rubin. Random walks: theory and selected applications. Adv. Chem. Phys., 1983. [Google Scholar]
  77. G. Zaslavsky, S. Benkadda. Chaos, Kinetics and Non-linear Dynamics in Fluids and Plasmas. Springer, Berlin, 1998. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.