Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 2, 2015
Page(s) 27 - 44
Published online 02 April 2015
  1. M. Aldana, V. Dossetti, C. Huepe, V. M. Kenke, H. Larralde. Phase transitions in systems of self-propelled agents and related network models. Phys. Rev. Lett., 98 (2007), no. 9, 095702–1. [CrossRef] [PubMed] [Google Scholar]
  2. I. Barber. Parasites and size-assortative schooling in three-spined sticklebacks. OIKOS, 101 (2003), 331–337. [CrossRef] [Google Scholar]
  3. Ch. Becco, N. Vanderwalle, J. Delcourt, P. Poncin. Experimental evidence of a structural and dynamical transition in fish school. Physica A, 367 (2006), 487–493. [CrossRef] [Google Scholar]
  4. U. Börner, A. Deutsch, H. Reichenbach, M. Bär. Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions. Phys. Rev. Lett, 89 (2002), 078101. [CrossRef] [PubMed] [Google Scholar]
  5. D.J.T. Sumpter J. Buhl, D. Biro, I.D. Couzin. Information transfer in moving animal groups. Theory Biosci., 127 (2008), 177–186. [CrossRef] [PubMed] [Google Scholar]
  6. J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, S. J. Simpson. From disorder to order in marching locusts. Science, 312 (2006), 1402–1406. [CrossRef] [PubMed] [Google Scholar]
  7. P-L. Buono, R. Eftimie. Analysis of Hopf/Hopf bifurcations in nonlocal hyperbolic models for self-organised aggregations. Math. Models Methods Appl. Sci., 24 (2014), 327–357. [CrossRef] [Google Scholar]
  8. P-L. Buono, R. Eftimie. Codimension-two bifurcations in animal aggregation models with symmetry. SIAM J. Appl. Dyn. Syst., 13 (2014), no. 4, 1542–1582. [CrossRef] [Google Scholar]
  9. José A. Carrillo, Massimo Fornasier, Giuseppe Toscani, Francesco Vecil. Particle, kinetic, and hydrodynamic models of swarming. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (Giovanni Naldi, Lorenzo Pareschi, Giuseppe Toscani, eds.) Modeling and Simulation in Science, Engineering and Technology Birkhäuser Boston 2010, 297–336 (English). [Google Scholar]
  10. Z. Chen, H. Liao, T. Chu. Aggregation and splitting in self-driven swarms. Physica A, 391 (2012), 3988–3994. [CrossRef] [Google Scholar]
  11. Y.-L. Chuang, M.R. D’Orsogna, D. Marthaler, A.L. Bertozzi, L.S. Chayes. State transitions and the continuum limit for a 2d interactiong, self-propelled particle system. Physica D, 232 (2007), 33–47. [CrossRef] [Google Scholar]
  12. A. Czirók, M. Vicsek, T. Vicsek. Collective motion of organisms in three dimensions. Physica A, 264 (1999), 299–304. [CrossRef] [Google Scholar]
  13. R. Eftimie. Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J. Math. Biol., 65 (2012), no. 1, 35–75. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. R. Eftimie. The effect of different communication mechanisms on the movement and structure of self-organised aggregations. Math. Model. Nat. Phenom., 7 (2013), no. 2, 32–51. [Google Scholar]
  15. R. Eftimie. Simultaneous use of different communication mechanisms leads to spatial sorting and unexpected collective behaviours in animal groups. J. Theor. Biol., 337 (2013), 42–53. [CrossRef] [PubMed] [Google Scholar]
  16. R. Eftimie, G. de Vries, M.A. Lewis. Complex spatial group patterns result from different animal communication mechanisms. Proc. Natl. Acad. Sci., 104 (2007), no. 17, 6974–6979. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Eftimie, G. de Vries, M.A. Lewis. Weakly nonlinear analysis of a hyperbolic model for animal group formation. J. Math. Biol., 59 (2009), 37–74. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. R. Eftimie, G. de Vries, M.A. Lewis, F. Lutscher. Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull. Math. Biol., 69 (2007), no. 5, 1537–1566. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. R.C. Fetecau. Collective behavior of biological aggregations in two dimensions: a nonlocal kinetic model. Math. Models Methods Appl. Sci., 21 (2011), no. 7, 1539–1. [CrossRef] [Google Scholar]
  20. F. Ginelli, H. Chaté. Relevance of metric-free interactions in flocking phenomena. Phys. Rev. Lett., 105 (2010), 168103. [CrossRef] [PubMed] [Google Scholar]
  21. E. Goodale, G. Beauchamp, R.D. Magrath, J.C. Nieh, G.D. Ruxton. Interspecific information transfer influences animal community structure. Trends Ecol. Evol., 25 (2010), no. 6, 354–361. [CrossRef] [PubMed] [Google Scholar]
  22. N.M. Harrison, M.J. Whitehouse. Mixed-species flocks: an example of niche construction?. Anim. Behav., 81 (2011), no. 4, 675–682. [CrossRef] [Google Scholar]
  23. J.K. Hellerstein, D. Newmark. Workplace segregation in the United States: race, ethnicity, and skill. The review of Economics and Statistics, 90 (2008), no. 3, 459–477. [CrossRef] [Google Scholar]
  24. O. Igoshin, A. Mogilner, R. Welch, D. Kaiser, G. Oster. Pattern formation and traveling waves in myxobacteria: Theory and modeling. Proc. Natl. Acad. Sci. USA, 98 (2001), 14913–14918. [CrossRef] [Google Scholar]
  25. J. Krause. The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus): a field study. Oecologia, 93 (1993), 356–359. [CrossRef] [PubMed] [Google Scholar]
  26. J.R. Krebs. Social learning and the significance of mixed-species flocks of chickadees (Parus spp.). Can. J. Zool., 51 (1973), no. 12, 1275–1288. [CrossRef] [Google Scholar]
  27. P.J.O. Miller. Mixed-directionality of killer whale stereotyped calls: a direction of movement cue?. Behav. Ecol. Sociobiol., 52 (2002), 262–270. [CrossRef] [Google Scholar]
  28. R. Muzinic. On the shoaling behaiour of sardines (Sardina pilchardus) in aquaria. J. Cons. Int. Expl. Mer., 37 (1977), 147–155. [CrossRef] [Google Scholar]
  29. M. Nagy, Z. Akos, D. Biro, T. Vicsek. Hierarchical group dynamics in pigeon flocks. Nature, 464 (2010), 890–983. [CrossRef] [PubMed] [Google Scholar]
  30. J.K. Parrish. Layering with depth in a hetero-specific fish aggregation. Env. Biol. Fishes, 26 (1989), 79–86. [CrossRef] [Google Scholar]
  31. P.H.C. Pereira, J.L.L. Feitosa, D.V. Medeiros, B.P. Ferreira. Reef fishes foraging facilitation behaviour: increasing the access to a food resource. Acta Ethologica, 16 (2013), no. 1, 53–56. [CrossRef] [Google Scholar]
  32. C.W. Reynolds. Flocks, herds and schools: A distributed behavioral model. Computer Graphics, 21 (1987), 25–34. [Google Scholar]
  33. R.M. Seyfarth, D.L. Cheney, P. Marler. Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science, 210 (1980), no. 4471, 801–803. [CrossRef] [PubMed] [Google Scholar]
  34. H. Sridhar, G. Beauchamp, K. Shanker. Why do birds participate in mixed-species foraging flocks? A large-scale synthesis. Anim. Behav., 78 (2009), no. 2, 337–347. [CrossRef] [Google Scholar]
  35. D.J.T. Sumpter. The principles of collective animal behaviour. Phil. Trans. R. Soc. B, 361 (2006), 5–22. [CrossRef] [Google Scholar]
  36. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75 (1995), no. 6, 1226–1229. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  37. T. Vicsek, A. Czirok, I.J. Farkas, D. Helbing. Application of statistical mechanics to collective motion in biology. Physica A, 274 (1999), 182–189. [CrossRef] [Google Scholar]
  38. G. Vines. Spatial consequences of aggressive behaviour in flocks of oystercatchers, Haematopus Ostralegus L.. Anim. Behav., 28 (1980), no. 4, 1175–1183. [CrossRef] [Google Scholar]
  39. D.P. Whitfield. Plumage variability, status signalling and individual recognition in avian flocks. Trends in Ecology & Evolution, 2 (1987), 13–18. [CrossRef] [PubMed] [Google Scholar]
  40. S.R. Witkin. The importance of directional sound radiation in avian vocalization. The Condor, 79 (1977), 490–493. [CrossRef] [Google Scholar]
  41. A.J. Wood, G.J. Ackland. Evolving the selfish herd: emergence of distinct aggregating strategies in an individual-based model. Proc. R. Soc. B, 274 (2007), 1637–1642. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.