Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 2, 2015
Page(s) 45 - 55
Published online 02 April 2015
  1. P. A. Abrams. When does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect. Ecol. Lett., 12 (2009), 462–474. [CrossRef] [PubMed] [Google Scholar]
  2. Y. Ben-Zion, G. Yaari, N. M. Shnerb. Optimizing metapopulation sustainability through a checkerboard strategy. PLoS Comput. Biol., 6 (2010), e1000643. [CrossRef] [PubMed] [Google Scholar]
  3. R. Capeáns, J. Sabuco, M. A. Sanjuán. When less is more: partial control to avoid extinction of predators in an ecological model. Ecol. Complexity, 19 (2014), 1–8. [CrossRef] [Google Scholar]
  4. S. Dey, B. Goswami, A. Joshi. Effects of symmetric and asymmetric dispersal on the dynamics of heterogeneous metapopulations: Two-patch systems revisited. J. Theoret. Biol., 345 (2014), 52–60. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Dey, B. Goswami, A. Joshi. A possible mechanism for the attainment of out-of-phase periodic dynamics in two chaotic subpopulations coupled at low dispersal rate. J. Theoret. Biol., 367 (2015), 100–110. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Dey, A. Joshi. Stability via asynchrony in Drosophila metapopulations with low migration rates. Science, 312 (2006), 434–436. [CrossRef] [PubMed] [Google Scholar]
  7. M. Doebeli. Dispersal and dynamics. Theoret. Popul. Biol., 47 (1995), 82–106. [CrossRef] [Google Scholar]
  8. D. J. Earn, S. A. Levin, P. Rohani. Coherence and conservation. Science, 290 (2000), 1360–1364. [CrossRef] [PubMed] [Google Scholar]
  9. D. Franco, F. M. Hilker. Adaptive limiter control of unimodal population maps. J. Theoret. Biol., 337 (2013), 161–173. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Franco, F. M. Hilker. Stabilizing populations with adaptive limiters: prospects and fallacies. SIAM J. Appl. Dyn. Syst., 13 (2014), 447–465. [CrossRef] [Google Scholar]
  11. D. Franco, A. Ruiz-Herrera. To connect or not to connect isolated patches. J. Theoret. Biol., 370 (2015), 72–80. [CrossRef] [MathSciNet] [Google Scholar]
  12. E. E. Goldberg, R. Lande. Species’ borders and dispersal barriers. Am. Nat., 170 (2007), 297–304. [CrossRef] [PubMed] [Google Scholar]
  13. A. Gonzalez, J. Lawton, F. Gilbert, T. Blackburn, I. Evans-Freke. Metapopulation dynamics, abundance, and distribution in a microecosystem. Science, 281 (1998), 2045–2047. [CrossRef] [PubMed] [Google Scholar]
  14. N. J. Gotelli. Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypothesis. Am. Nat., 138 (1991), 768–776. [CrossRef] [Google Scholar]
  15. V. Grimm, C. Wissel. Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia, 109 (1997), 323–334. [CrossRef] [PubMed] [Google Scholar]
  16. M. Gyllenberg, I. Hanski, T. Lindström. A predator-prey model with optimal suppression of reproduction in the prey. Math. Biosci., 134 (1996), 119–152. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. M. Gyllenberg, G. Söderbacka, S. Ericsson. Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model. Math. Biosci., 118 (1993), 25–49. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. A. Hastings. Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology, 74 (1993), 1362–1372. [CrossRef] [Google Scholar]
  19. A. Hastings, L. W. Botsford. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. USA, 103 (2006), 6067–6072. [CrossRef] [Google Scholar]
  20. F. M. Hilker, E. Liz. Harvesting, census timing and “hidden” hydra effects. Ecol. Complexity, 14 (2013), 95–107. [CrossRef] [Google Scholar]
  21. A. R. Ives, S. T. Woody, E. V. Nordheim, C. Nelson, J. H. Andrews. The synergistic effects of stochasticity and dispersal on population densities. Am. Nat., 163 (2004), 375–387. [CrossRef] [PubMed] [Google Scholar]
  22. D. Juher, V. Mañosa. Spectral properties of the connectivity matrix and the SIS-epidemic threshold for mid-size metapopulations. Math. Model. Nat. Phenom., 9 (2014), 108–120. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  23. B. E. Kendall, G. A. Fox. Spatial structure, environmental heterogeneity, and population dynamics: analysis of the coupled logistic map. Theoret. Popul. Biol., 54 (1998), 11–37. [Google Scholar]
  24. A. L. Lloyd. The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics. J. Theoret. Biol., 173 (1995), 217–230. [Google Scholar]
  25. R. Nathan. The challenges of studying dispersal. Trends Ecol. Evol., 16 (2001), 481–483. [CrossRef] [Google Scholar]
  26. K. Parvinen. Metapopulation dynamics and the evolution of sperm parasitism. Math. Model. Nat. Phenom., 9 (2014), 124–137. [CrossRef] [EDP Sciences] [Google Scholar]
  27. W. E. Ricker. Stock and recruitment. J. Fish. Board Can., 11 (1954), 559–623. [CrossRef] [Google Scholar]
  28. P. Sah, P. J. Salve, S. Dey. Stabilizing biological populations and metapopulations through adaptive limiter control. J. Theoret. Biol., 320 (2013), 113–123. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  29. J. Saldaña. Modelling the spread of infectious diseases in complex metapopulations. Math. Model. Nat. Phenom., 5 (2010), 22–37. [CrossRef] [EDP Sciences] [Google Scholar]
  30. R. V. Solé, J. G. Gamarra, M. Ginovart, D. López. Controlling chaos in ecology: from deterministic to individual-based models. Bull. Math. Biol., 61 (1999), 1187–1207. [CrossRef] [PubMed] [Google Scholar]
  31. H. Thunberg. Periodicity versus chaos in one-dimensional dynamics. SIAM Review, 43 (2001), 3–30. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. E. Tillmann. Habitat fragmentation and ecological networks in Europe. GAIA-Ecological Perspectives for Science and Society, 14 (2005), 119–123. [Google Scholar]
  33. J. M. J. Travis, C. Dytham. Habitat persistence, habitat availability and the evolution of dispersal. Proc. R. Soc. B, 266 (1999), 723–728. [CrossRef] [Google Scholar]
  34. S. Tung, A. Mishra, S. Dey. A comparison of six methods for stabilizing population dynamics. J. Theoret. Biol., 356 (2014), 163–173. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.