Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 2, 2015
Page(s) 56 - 73
Published online 02 April 2015
  1. J. R. Artalejo, A. Economou, M. J. Lopez-Herrero. Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size. J. Math. Biol., 67 (2013), no. 4, 799-831. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. N. Bacaer, E. H. Ait Dads. On the biological interpretation of a definition for the parameter R0 in periodic population models. J. Math. Biol., 65 (2012), no. 4, 60-621. [Google Scholar]
  3. N. Bacaer, M. G. M. Gomes. On the final size of epidemics with seasonality. Bull. Math. Biol., 71 (2009), no. 8, 1954-1966. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. M. Bradonjic. Outbreak of Infectious Diseases through the Weighted Random Connection Model. MMNP, 9 (2014), no. 2, 82-88. [CrossRef] [EDP Sciences] [Google Scholar]
  5. F. Brauer, C. Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology. Second Edition, Springer 2011. [Google Scholar]
  6. F. Brauer, P. v. d. Driessche, J. Wu. Mathematical Epidemiology. Springer 2008. [Google Scholar]
  7. Z. Brzeniak, M. Capifiski, and F. Flandoli. Pathwise global attractors for stationary random dynamical systems. Probab. Theory Rel., 95 (1993), 87-102. [CrossRef] [Google Scholar]
  8. V. Capasso. Mathematical Structures of Epidemic Systems. Springer-Verlag 1993. [Google Scholar]
  9. H. Crauel, F. Flandoli. Attractors for random dynamical systems. Probab. Theory Rel., 100 (1994), 365-393. [CrossRef] [Google Scholar]
  10. N. H. Dang, N. H. Du, G. Yin. Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise. J. Differ. Equations, 257 (2014) 2078-2101. [CrossRef] [Google Scholar]
  11. N. H. Du, N. H. Dang, Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Commun. Pure Appl. Anal. 13 (2014), no. 6, 2693-2712. [CrossRef] [MathSciNet] [Google Scholar]
  12. N. H. Du, N. H. Dang. Dynamics of Kolmogorov systems of competitive type under the telegraph noise. J. Differ. Equations, 250 (2011) 386-409. [CrossRef] [Google Scholar]
  13. A. Friedman. Epidemiological models with seasonality. Mathematical methods and models in biomedicine, 389-410, Lect. Notes Math. Model. Life Sci., Springer, New York, 2013. [Google Scholar]
  14. I.I Gihman and A.V. Skorohod. The Theory of Stochastic Processes. Springer-Verlag Berlin Heidelberg New York 1979. [Google Scholar]
  15. A. Gray, D. Greenhalgh, X. Mao, J. Pan. The SIS epidemic model with Markovian switching. J. Math. Anal. Appl., 394 (2012), no. 2, 496-516. [CrossRef] [Google Scholar]
  16. H. W. Hethcote. Qualitative analyses of communicable disease models. Math. Biosci., 28 (1976), 335-356. [CrossRef] [Google Scholar]
  17. T. House. Non-Markovian Stochastic Epidemics in Extremely Heterogeneous Populations. MMNP, 9 (2014), no. 2, 153-160. [Google Scholar]
  18. C. Ji, D. Jiang, N. Shi. The behavior of an SIR epidemic model with stochastic perturbation. Stoch. Anal. Appl., 30 (2012), no. 5, 755-773. [CrossRef] [Google Scholar]
  19. A. Lahrouz, A. Settati. Asymptotic properties of switching diffusion epidemic model with varying population size. Appl. Math. Comput., 219 (2013), no. 24, 11134-11148. [CrossRef] [Google Scholar]
  20. E. K. Leah. Mathematical Models In Biology. SIAM’s Classics in Applied Mathematics 46, 2005. [Google Scholar]
  21. A. C. Lowen, S. Mubareka, J. Steel, P. Palese. Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature. PLoS Pathog, 3 (2007), no. 10, 1470-1476. [CrossRef] [PubMed] [Google Scholar]
  22. X. Mao. Attraction, stability and boundedness for stochastic differential delay equations. Nonlinear Anal.-Theor., 47 (2001), no. 7, 4795-4806. [CrossRef] [Google Scholar]
  23. R. M. May. Parasitic infections as regulators of animal populations. Am. Sci., 71 (1983), 36-45. [PubMed] [Google Scholar]
  24. S. P. Meyn, R. L. Tweedie. Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Prob., 25 (1993), 518-548. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. D. Murray. Mathematical Biology. Springer Verlag, Heidelberg, 1989. [Google Scholar]
  26. L. Perko. Differential Equations and Dynamical Systems. Springer-Verlag, New York, 1991. [Google Scholar]
  27. K. Pichór, R. Rudnicki. Continuous Markov semigroups and stability of transport equations. J. Math. Anal. Appl., 249 (2000), no. 2, 668-685. [CrossRef] [Google Scholar]
  28. L. Stettner. On the existence and uniqueness of invariant measure for continuous time Markov processes. LCDS Report, no. 86-16, April 1986, Brown University, Providence. [Google Scholar]
  29. C. L. Wesley, L. J. S. Allen. The basic reproduction number in epidemic models with periodic demographics. J. Biol. Dyn., 3 (2009), no. 2-3, 116-129. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  30. C. Viboud, K. Pakdaman, P.-Y. Boelle, M. L. Wilson, M. F. Myers, A.-J. Valleron, A. Flahault. Association of influenza epidemics with global climate variability. Eur. J. Epidemiol., 19 (2004), no. 11, 1055-1059. [CrossRef] [PubMed] [Google Scholar]
  31. C. Yuan X. Mao. Attraction and Stochastic Asymptotic Stability and Boundedness of Stochastic Functional Differential Equations with Respect to Semimartingales. Stoch Anal Appl, 24 (2006), 1169-1184. [CrossRef] [Google Scholar]
  32. N. Ziyadi, A. Yakubu. Periodic incidence in a discrete-time SIS epidemic model. Mathematical methods and models in biomedicine, 411-427, Lect. Notes Math. Model. Life Sci., Springer, New York, 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.