Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 2, 2015
Ecology
Page(s) 74 - 95
DOI https://doi.org/10.1051/mmnp/201510206
Published online 02 April 2015
  1. S. Altizer, C.L. Nunn, P.H. Thrall, J.L. Gittleman, J. Antonovics, A.A. Cunningham, A.P. Dobson, V. Ezenwa, K.E. Jones, A.B. Pedersen, M. Poss, J.R.C. Pulliam. Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu. Rev. Ecol. Evol. Syst., 34 (2003): 517–547. [CrossRef] [Google Scholar]
  2. R.M. Anderson, R. M. May. Population biology of infectious diseases part I. Nature 280 (1979) 361–367. [CrossRef] [PubMed] [Google Scholar]
  3. R. M. Anderson, R. M. May. The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. London B, 314 (1986) 533–570. [CrossRef] [Google Scholar]
  4. M. Begon, J.L. Harper, C.R. Townsend. Ecology. Oxford, Blackwell Science, 2002. [Google Scholar]
  5. I. Cote, R. Poulin. Parasitism and group size in social animals: a meta-analysis. Behavioral Ecology, 6 (1995) 159–163. [CrossRef] [Google Scholar]
  6. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28 (1990) 365–382. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. M.A. Duffy, L. Sivars-Becker. Rapid evolution and ecological host- parasite dynamics. Ecol. Lett., 10 (2007) 44–53. [CrossRef] [PubMed] [Google Scholar]
  8. A. El-Gohary, A.S. Al-Ruzaiza. Chaos and adaptive control in two prey, one predator system with nonlinear feedback. Chaos Solitons & Fractals, 34 (2007) 443–453. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Friend. Avian disease at the Salton Sea. Hydrobiologia, 473 (2002) 293–306. [CrossRef] [Google Scholar]
  10. S. Gakkhar, R.K. Naji. Existence of chaos in two-prey, one-predator system. Chaos Solitons & Fractals, 17 (2003) 639–649. [CrossRef] [MathSciNet] [Google Scholar]
  11. W. Gentleman, A. Leising, B. Frost, S. Strom, J. Murray. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep Sea Res. II, 50 (2003) 2847–2875. [Google Scholar]
  12. M.E. Gilpin. Spiral chaos in a predator-prey model. Am. Nat., 113 (1979) 306–308. [CrossRef] [Google Scholar]
  13. K.P. Hadeler, H.I. Freedman. Predator-prey population with parasitic infection. J. Math. Biol., 27 (1989) 609–631. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. M. Haque, E. Venturino. The role of transmissible diseases in the Holling-Tanner predator-prey model. Theor. Pop. Biol., 70 (2006) 273–288. [Google Scholar]
  15. M. Haque, E. Venturino. Effect of parasitic infection in the Leslie-Gower predator-prey model. J. Biol. Sys., 16 (2008) 445–461. [Google Scholar]
  16. V. Hutson, G.T. Vickers. A criterion for permanent coexistence of species, with an application to a two-prey one-predator system. Math. Biosci., 63 (1983) 253–269. [CrossRef] [Google Scholar]
  17. P.T.J. Johnson, D.E. Stanton, E.R. Preu, K.J. Forshay, S.R. Carpenter. Dining on disease: how interactions between infection and environment affect predation risk. Ecology, 87 (2006) 1973–1980. [CrossRef] [PubMed] [Google Scholar]
  18. Z. Kabata. Parasites and diseases of fish cultured in the tropics. London, Taylor and Francis, 1985. [Google Scholar]
  19. A. Klebanoff, A. Hastings. Chaos in One-Predator, Two-Prey Models: General Results from Bifurcation Theory. Math. Biosci., 122 (1994) 221–233. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. B. Krasnov, I.S. Khokhlova, G.I. Shenbrot. The effect of host density on ectoparasite distribution: an example of a rodent parasitized by fleas. Ecology, 83 (2002) 164–175. [CrossRef] [Google Scholar]
  21. R. Kortet, M.J. Rantala, A. Hedrick. Boldness in anti-predator behaviour and immune defence in field crickets. Evol. Ecol. Res., 9 (2007) 185–197. [Google Scholar]
  22. H. Malchow, F.M. Hilker, S.V. Petrovskii, K. Brauer. Oscillations and waves in a virally infected plankton system. I. The lysogenic stage. Ecol. Compl., 1 (2004) 211–223. [Google Scholar]
  23. C. Matz, S. Kjelleberg. Off the hook - how bacteria survive protozoan grazing. Trends Microbiol, 13 (2005) 302–307. [CrossRef] [PubMed] [Google Scholar]
  24. H. McCallum, N. Barlow, J. Hone. How should pathogen transmission be modelled? Trends Ecol. Evol. 16 (2001) 295–300. [Google Scholar]
  25. A.Y. Morozov. Revealing the role of predator-dependent disease transmission in the epidemiology of a wildlife infection: a model study. Theor. Ecol., 5 (2012) 517–532. [Google Scholar]
  26. A. Morozov, A. Best. Predation on infected hosts promotes evolutionary branching of virulence and pathogen biodiversity. J. Theor. Biol., 307 (2012) 29–36. [CrossRef] [PubMed] [Google Scholar]
  27. E. Odum, G.W. BARRETT. Fundamentals of Ecology. Belmont, Thomson Brooks/Cole, 2004. [Google Scholar]
  28. C. Packer, R.D. Holt, P.J. Hudson, K.D. Lafferty, A.P. Dobson. Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett., 6 (2003) 797–802. [CrossRef] [Google Scholar]
  29. M.C. Rigby, J. Jokela. Predator avoidance and immune defence: costs and trade-offs in snails. Proc. R. Soc. Lond. B Biol. Sci., 267 (2000) 171–176. [CrossRef] [Google Scholar]
  30. S. Roy, J. Chattopadhyay. Disease-selective predation may lead to prey extinction. M2AS, 28 (2005) 1257–1267. [Google Scholar]
  31. S. Sharma, G. P. Samanta. Analysis of a two prey one predator system with disease in the first prey population. Int. J. Dyna. Cont., (In press) 2014. [Google Scholar]
  32. S. Van Nouhuys, S.I. Hanski. Apparent competition between parasitoids mediated by a shared hyperparasitoid. Ecol. Lett., 3(2) (2000) 82. [CrossRef] [Google Scholar]
  33. R. R. Vance. Predation and Resource Partitioning in One Predator – Two Prey Model Communities. Am. Nat., 112 (1978) 797–813. [CrossRef] [Google Scholar]
  34. E. Venturino. The influence of diseases on Lotka-Volterra systems. Rocky Mount. J. Math., 24 (1994) 381–402. [CrossRef] [MathSciNet] [Google Scholar]
  35. E. Venturino Ecoepidemiology: a more comprehensive view of population interactions MMNP, (In press) 2015. [Google Scholar]
  36. E. Venturino, S. Petrovskii. Spatiotemporal behavior of a prey-predator system with a group defense for prey. Ecol. Compl., 14 (2013) 37–47 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.