Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 2, 2015
Page(s) 96 - 114
Published online 02 April 2015
  1. M. Abbott. Phytoplankton patchiness: ecological implications and observation methods. In: Patch dynamics (Levin, S.A., Powell, T.M., Steele, J.H., eds.), Lecture Notes in Biomathematics vol. 96. Springer, Berlin, 1993, pp. 37–49. [Google Scholar]
  2. W. Allegretto, C. Mocenni, A. Vicino. Periodic solutions in modelling lagoon ecological interactions. J. Math. Biol., 51 (2005), 367–388. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. M. Banerjee, S.V. Petrovskii. Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system. Theoretical Ecology, 4 (2011), 37–53. [CrossRef] [Google Scholar]
  4. M. Bengfort, U. Feudel, F.M. Hilker, H. Malchow. Plankton blooms and patchiness generated by heterogeneous physical environments. Ecological Complexity, 20 (2014), 185–194. [CrossRef] [Google Scholar]
  5. J. Chattopadhyay, S. Pal. Viral infection on phytoplankton zooplankton system a mathematical model. Ecological Modelling, 151 (2002), 15–28. [CrossRef] [Google Scholar]
  6. L. Edelstein-Keshet. Mathematical models in biology. Random House, New York, 1988. [Google Scholar]
  7. A.M. Edwards, J. Brindley. Zooplankton mortality and the dynamical behavior of plankton population models. Bull. Math. Biol., 61 (1999), 303–339. [Google Scholar]
  8. M.J.R. Fasham. The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol. Annu. Rev., 16 (1978), 43–79. [Google Scholar]
  9. T. Gaarder, H.H. Gran. Investigation of the production of plankton in the Oslo fjord, Rapp. et Proc-Verb. Cons. Int. Explor. Mer., 42 (1927), 3–48. [Google Scholar]
  10. M. Guysinsky, B. Hasselblatt, V. Rayskin. Differentiability of the Hartman-Grobman Linearization. Discr. Contin. Dyn. Syst., 9 (2003), 979–984. [CrossRef] [Google Scholar]
  11. G.P. Harris. Phytoplankton ecology. Structure function and fluctuation. Chapman and Hall, USA, 1986. [Google Scholar]
  12. V. Hulla, L. Parrell, M. Falcucci. Modelling dissolved oxygen dynamics in coastal lagoons. Ecol. Model., 211 (2008), 468–480. [CrossRef] [Google Scholar]
  13. Z. Jin, T.P. Charlock, W.L. Smith Jr., K. Rutledge. A parametrization of ocean surface albedo. Geophys. Res. Lett., 31 (2004), L22301, doi:10.1029/2004GL021180. [CrossRef] [Google Scholar]
  14. Y.A. Kuznetsov. Elements of applied bifurcation theory. Applied Mathematical Sciences vol. 112. Springer, Berlin, 1995. [Google Scholar]
  15. T.K. Leen. A Coordinate Independent Center Manifold Reduction. Phys. Lett., 174 (1993), 89–93. [CrossRef] [MathSciNet] [Google Scholar]
  16. N.D. Lewis, A. Morozov, M.N. Breckels, M. Steinke, E.A. Codling. Multitrophic interactions in the sea: assessing the effect of infochemical-mediated foraging in a 1-d spatial model. Math. Model. Nat. Phenom., 8(6) (2015), 25–44. [CrossRef] [EDP Sciences] [Google Scholar]
  17. F. Mackas, C.M. Boyd. Spectral analysis of zooplankton spatial heterogeneity. Science, 204 (1979), 62–64. [CrossRef] [PubMed] [Google Scholar]
  18. H. Malchow. Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics. Proc. R. Soc. Lond. B., 251 (1993), 103–109. [Google Scholar]
  19. H. Malchow, S.V. Petrovskii. Dynamical stabilization of an unstable equilibrium in chemical and biological systems. Mathematical and Computer Modelling, 36 (2002), 307–319. [CrossRef] [Google Scholar]
  20. H. Malchow, S.V. Petrovskii, F. Hilker. Models of spatiotemporal pattern formation in plankton dynamics. Nova Acta Leopoldina, 88 (2003), 325–340. [Google Scholar]
  21. H. Malchow, S.V. Petrovskii, E. Venturino. Spatiotemporal patterns in ecology and epidemiology: theory, models, simulations. Mathematical and Computational Biology Series. Chapman and Hall / CRC Press, Boca Raton, 2008. [Google Scholar]
  22. N. Marchettini, C. Mocenni, A. Vicino. Integrating slow and fast dynamics in a shallow water coastal lagoon. Annali di Chimica, 89 (1999), 505–514. [Google Scholar]
  23. A.K. Misra. Modeling the depletion of dissolved oxygen in a lake due to submerged macrophytes. Nonlinear Analysis: Modeling and Control, 15 (2010), 185–198. [Google Scholar]
  24. C. Mocenni. Mathematical modelling of coastal systems: engineering approaches for parameter identification, validation and analysis of the models. Unpublished manuscript, (2006), available at˙files/confMocenni.pdf. [Google Scholar]
  25. A.S. Monin, A.M. Yaglom. Statistical fluid mechanics, Vol. 1. MIT Press, Cambridge MA, 1971. [Google Scholar]
  26. B. Moss. Ecology of Freshwaters, 4th edition. John Willey, Chichester, 2010. [Google Scholar]
  27. A. Okubo. Diffusion and ecological problems: mathematical models. Springer-Verlag, Berlin, 1980. [Google Scholar]
  28. E. Paasche. Pelagic production in nearshore waters. In: Nitrogen cycling in coastal marine environments (Blackburn H., Sorensen J., eds.), John Wiley, Chichester, 1988, 33–58. [Google Scholar]
  29. M. Pascual. Diffusion-induced chaos in a spatial predator-prey system. Proc. R. Soc. Lond. B., 251 (1993), 1–7. [CrossRef] [Google Scholar]
  30. S.V. Petrovskii, H. Malchow. Critical phenomena in plankton communities: KISS model revisited. Nonlinear Analysis: Real World Applications, 1 (2000), 37–51. [CrossRef] [MathSciNet] [Google Scholar]
  31. S.V. Petrovskii, H. Malchow. Mathematical models of marine ecosystems. In: The Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO. Eolss Publishers, Oxford, 2005. [] [Google Scholar]
  32. S.V. Petrovskii, K. Kawasaki, F. Takasu, N. Shigesada. Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species. Japan Journal of Industrial and Applied Mathematics, 18 (2001), 459–481. [CrossRef] [Google Scholar]
  33. S. Rinaldi, R. Soncini-sessa, H. Stehfest, H. Tamura. Modeling and control of river quality. McGraw-Hill, 1979. [Google Scholar]
  34. L.A. Segel, J.L. Jackson. Dissipative structure: an explanation and an ecological example. J. Theor. Biol., 37 (1972), 545–559. [CrossRef] [PubMed] [Google Scholar]
  35. J.A. Sherratt, M.A. Lewis, A.C. Fowler. Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA, 92 (1995), 2524–2528. [CrossRef] [Google Scholar]
  36. I.R. Smith. A simple theory of algal deposition, Freshwater Biol., 12 (1982), 445–449. [CrossRef] [Google Scholar]
  37. J.H. Steele. Spatial pattern in plankton communities, Plenum Press, New York, 1978. [Google Scholar]
  38. J.H. Steele, E.W. Henderson. A simple plankton model. Am. Nat., 117 (1981), 676–691. [CrossRef] [Google Scholar]
  39. A.A. Voinov, A.P. Tonkikh. Qualitative model of eutrophication in macrophyte lakes. Ecol. Model., 35 (1987), 211–226. [CrossRef] [Google Scholar]
  40. V. Volpert, S. Petrovskii. Reaction-diffusion waves in biology. Phys. Life Rev., 6 (2009), 267–310. [Google Scholar]
  41. M. Warkentin, H.M. Freese, U. Karsten, R. Schumann. New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystem by using Optical Oxygen Sensor Spots. Applied and Environmental Microbiology, 73 (2007), 6722–6729. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.