Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 2, 2015
Ecology
Page(s) 115 - 128
DOI https://doi.org/10.1051/mmnp/201510208
Published online 02 April 2015
  1. A. C. Allison. Protection Afforded by Sickle-cell Trait Against Subtertian Malarial Infection. Br. Med. J., 1 (1954), 290–294. [CrossRef] [PubMed] [Google Scholar]
  2. R. R. Baker. The Evolutionary Ecology of Animal Migration. Holmes and Meier, New York, 1978. [Google Scholar]
  3. A. D. Bazykin. Nonlinear Dynamics of Interacting Populations. World Scientific publishing, Singapore, 1998. [Google Scholar]
  4. I. M. Bomze. Lotka-Volterra equations and replicator dynamics: a two dimensional classification. Biol. Cybernetics, 48 (1983), 201–211. [CrossRef] [Google Scholar]
  5. A. S. Bratus, A. S. Novozhilov, A. P. Platonov. Dynamical Systems and Models in Biology. FizmMatLit, Moscow, 2010 [in Russian]. [Google Scholar]
  6. A. S. Bratus, V. P. Posvyanskii, A. S. Novozhilov. A note on the replicator equation with explicit space and global regulation. Mathematical Biosciences and Engineering (MBE), 8(3) (2011), 659–676. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. S. Chernavskii. Synergetics and Information. Dynamic Information Theory. Editorial URSS, Minsk, 2004 [in Russian]. [Google Scholar]
  8. D. S. Chernavskii, N. M. Chernavskaya. Some theoretical aspects of the problem of life origin. J Theor Biol., 50(1) (1975), 13–23. [CrossRef] [PubMed] [Google Scholar]
  9. C. W. Clark, M. Mangel. Dynamic State Variable Models in Ecology: Methods and Applications. Oxford Series in Ecology and Evolution. Oxford University Press, 2000. [Google Scholar]
  10. R. Cressman. Evolutionary Dynamics and Existence Form Games. MIT Press, Cambridge, 2003. [Google Scholar]
  11. Ch. Darwin. On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. A Facsimile of the First Edition. Harvard University Press, Cambridge MA, 1964. [Google Scholar]
  12. R. Dawkins. Universal Darwinism. In: Evolution from molecules to man, ed. D. S. Bendall. Cambridge University Press, 1983. [Google Scholar]
  13. P. J. De Coursey. Biological Rhythms in the Marine Environment. Univ. South Carolina Press, Columbia, SC, 1976. [Google Scholar]
  14. M. Eigen. Self-Organization of Matter and the Evolution of Biological Macromolecules. Naturwissenschaften, 58 (1971), 465–523. [CrossRef] [PubMed] [Google Scholar]
  15. R. A. Fisher. The Genetical Theory of Natural Selection: A Complete Variorum Edition. Oxford: Oxford University Press, 1999. [Google Scholar]
  16. P. Fluri, R. Frick. Honey bee losses during mowing of flowering fields. Bee world, 83 (2002), 109-118. [CrossRef] [Google Scholar]
  17. A. Gabriel, J. Przybylski. Sickle-cell anemia: A Look at Global Haplotype Distribution. Nature Education, 3(3):2 (2010). Available online at http://www.nature.com/scitable/topicpage/sickle-cell-anemia-a-look-at-global-8756219 [Google Scholar]
  18. A. N. Gorban. Equilibrium encircling. Equations of chemical kinetics and their thermodynamic analysis. Nauka, Novosibirsk, 1984 [in Russian]. [Google Scholar]
  19. A. N. Gorban. Selection Theorem for Systems with Inheritance. Math. Model. Nat. Phenom., 2(4) (2007), 1-45. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  20. A. N. Gorban, R. G. Khlebopros. Demon of Darwin: Idea of optimality and natural selection. Nauka (FizMatGiz), Moscow, 1988 [in Russian]. [Google Scholar]
  21. J. B. S. Haldane. The Causes of Evolution. Princeton Science Library, Princeton University Press, 1990. [Google Scholar]
  22. M. A. Hanin. Energy and optimality criteria developmental processes. in Mathematical Biology development, 177-187, Nauka, Moscow, 1982 [in Russian]. [Google Scholar]
  23. M. A. Hanin, N. L. Dorfman. Natural selection and extremum principle. in Thermodynamics and kinetics of biological process. Nauka, Moscow, 1980 [in Russian]. [Google Scholar]
  24. J. Hofbauer, K. Sigmund. Evolutionary game dynamics. Bull. (New Series) American Math. Soc. 40(4) (2003), 479–519. [Google Scholar]
  25. G. E. Insarov. Stepped model of growth and reproduction of organisms. in Quantitative aspects of the growth of organisms. Nauka, Moscow, 1975 [in Russian]. [Google Scholar]
  26. G. P. Karev. On mathematical theory of selection: Continuous time population dynamics. J. of Mathematical Biology, 60 (2010), 107–129. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  27. G. P. Karev. Replicator equations and the principle of minimal production of information. Bull Math Biol, 72(5) (2010), 1124–1142. [Google Scholar]
  28. G. P. Karev, I. G. Kareva. Replicator Equations and Models of Biological Populations and Communities. Math. Model. Nat. Phenom., 9(3) (2014), 68-95. [CrossRef] [EDP Sciences] [Google Scholar]
  29. G. P. Karev, A. S. Novozhilov, F. S. Berezovskaya. On the asymptotic behavior of the solutions to the replicator equation. Math Med Biol, 28(2) (2011), 89–110. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  30. A. Y. Klimenko. Entropy and equilibria in competitive systems. Entropy, 16 (2014), 1–22. [CrossRef] [MathSciNet] [Google Scholar]
  31. O. A. Kuzenkov. Mathematical modelling selection processes. Mathemtical modelling and optimal control, Lobachevsky State University: Nizhnii Novgorod (1994), 120–131 [in Russian]. [Google Scholar]
  32. O. A. Kuzenkov. A dynamical system on the set of Radon probability measures. Differential Equations, 31 (1995), 549-554. [MathSciNet] [Google Scholar]
  33. O. A. Kuzenkov. An optimal control for a Volterra distributed system. Automation and Remote Control, 67(7) (2006), 1028–1038. [CrossRef] [MathSciNet] [Google Scholar]
  34. O. A. Kuzenkov. The investigation of the population dynamics control problems based on the generalized Kolmogorov model. Journal of Computer and Systems Sciences International, 48(5) (2009), 839–846. [CrossRef] [MathSciNet] [Google Scholar]
  35. O. A. Kuzenkov, G. V. Kuzenkova. Optimal control of self-reproduction systems. Journal of Computer and Systems Sciences International, 51(4) (2012), 500–511. [CrossRef] [MathSciNet] [Google Scholar]
  36. O. A. Kuzenkov, E. A. Ryabova, K. R. Krupoderova. Mathematical models of selection processes. Lobachevsky State University: Nizhni Novgorod, 2012 [in Russian]. Available online at http://www.unn.ru/books/met files/kuzryab.pdf [Google Scholar]
  37. O. A. Kuzenkov, E. A. Ryabova. Mathematical modeling of selection processes. Lobachevsky State University: Nizhnii Novgorod, 2007 [in Russian]. [Google Scholar]
  38. T. R. Malthus. An essay on the principal of Population. Penguin Books, 1985. [Google Scholar]
  39. J. Mylius, O. Diekmann. On evolutionary stable life histories, optimization and the need to be specific about density dependence. OIKOS 74, 218–224, Copenhagen, 1995. [Google Scholar]
  40. D. W. Narver. Diel vertical movements and feeding of underyearling sockeye salmon and the limnetic zooplankton in Babine Lake, British Columbia. J. Fish. Res. Board Can, 27 (1970), 281–316. [CrossRef] [Google Scholar]
  41. J. Neumann. Theory of Self-Reproducing Automata. Univ. of Illinois Press, Urbana, 1966. [Google Scholar]
  42. G. Parker, J. M. Smith. Optimality theory in evolutionary biology. Nature, 348 (1990), 27–33. [CrossRef] [Google Scholar]
  43. K. Parvinen. Evolutionary suicide. Acta Biotheoretica, 53(3) (2005), 241–264. [CrossRef] [PubMed] [Google Scholar]
  44. K. Parvinen. Metapopulation dynamics and the evolution of sperm parasitism. Math. Model. Nat. Phenom., 9(3) (2014), 124–137. [CrossRef] [EDP Sciences] [Google Scholar]
  45. Y. A. Pykh. Equilibrium and stability in models of population dynamics. Nauka, Moscow, 1983 [in Russian]. [Google Scholar]
  46. P. Racsko, M. Semenov. Analysis of mathematical principles in crop growth simulation models. Ecological Modelling, 47 (1989), 291–302. [CrossRef] [Google Scholar]
  47. M. Romanovsky, N. Stepanov, D. Chernavskii. Mathematical modeling in biophysics. Nauka, Moscow, 1975 [in Russian]. [Google Scholar]
  48. R. Rosen. Optimality Principles in Biology. Butterworths, London, 1967. [Google Scholar]
  49. L. I. Rozonoer and E. I. Sedyh. On the mechanisms of of evolution of selfreproduction systems. Automation and Remote Control, 40 (1979), 243–251; 419–429; 741–749. [Google Scholar]
  50. F. N. Semevsky and S. M. Semenov. Mathematical modeling of ecological processes. Gidrometeoizdat, Leningrad, 1982 [in Russian]. [Google Scholar]
  51. J. M. Smith. Evolution and the theory of games. Cambridge Univ. Press, Cambridge, 1982. [Google Scholar]
  52. Y. M. Svirezhev. Phenomenological thermodynamics of interacting populations. J. of General Biology, 52(6) (1991), 840–853 [in Russian]. [Google Scholar]
  53. Y. M. Svirezhev, D. O. Logofet. Stability of biological communities. Nauka, Moscow, 1978 [in Russian]. [Google Scholar]
  54. P. D. Taylor, L. B. Jonker. Evolutionary stable strategies and game dynamics. Math. Biosci., 40 (1978), 145–156. [Google Scholar]
  55. A. T. Teriokhin. Evolutionarily optimal age schedule of repair: Computer modeling of energy allocation between current and future survival and reproduction. Evolutionary Ecology, 12 (1998), 291–307. [CrossRef] [Google Scholar]
  56. A. T. Teriokhin. Optimization modeling the evolution of the life cycle. Dissertation for the degree of Doctor of Biological Sciences. Lomonosov Moscow State University, Moscow, 2001 [in Russian]. [Google Scholar]
  57. P. F. Verhulst. Notice sur la loi que la population suit dans son accroissement. Corr. Math. et Phys., 10 (1838), 113–121. [Google Scholar]
  58. V. Volterra. Lecons sur la Theorie Mathematique de la Lutte pour la Vie. Paris, 1931 [Google Scholar]
  59. S. Wright. Evolution: Selected Papers. University of Chicago Press, Chicago, 1986. [Google Scholar]
  60. L. C. Young. Lectures on the Calculus of Variations and Optimal Control Theory. Philadelphia, 1969. [Google Scholar]
  61. T. M. Zaret. Predation and Freshwater Communities. Yale Univ. Press, New Haven, CT, 1980. [Google Scholar]
  62. E. C. Zeeman. Population dynamics from game theory. in Global theory of dynamical systems. Lecture notes in mathematics. vol. 819. Springer Berlin Heidelberg, 1980. [Google Scholar]
  63. B. Zeide. Quality as a characteristic of ecological models. Ecological Modelling, 55 (1991), 161–174. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.