Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 2, 2015
Page(s) 130 - 140
Published online 02 April 2015
  1. L. J. S. Allen. An introduction to the stochastic process with applications to biology. Pearson, Upper Saddle River, NJ, 2003. [Google Scholar]
  2. I. Bashkirtseva, L. Ryashko. Stochastic sensitivity of 3D-cycles. Math. Comp. Sim., 66 (2004), 55–67. [Google Scholar]
  3. I. Bashkirtseva, G. Chen, L. Ryashko. Stabilizing stochastically-forced oscillation generators with hard excitement: a confidence-domain control approach. Eur. Phys. J. B, 86 (2013), 437. [CrossRef] [EDP Sciences] [Google Scholar]
  4. A. A. Berryman. Stabilization or regulation: what it all means!. Oecologia, 86 (1991), 140–143. [CrossRef] [PubMed] [Google Scholar]
  5. A. A. Berryman. Limiting factors and population regulation. Oikos, 105 (2004), 667–670. [CrossRef] [Google Scholar]
  6. A. J. Black, A. J. McKane. Stochastic formulation of ecological models and their applications. Trends in Ecology and Evolution, 27 (2012), 337–345. [CrossRef] [Google Scholar]
  7. R. P. Blackshaw, S. V. Petrovskii. Limitation and regulation of ecological populations: a meta-analysis of Tipula paludosa field data. Math. Model. Nat. Phenom., 2 (2007), 46–62. [CrossRef] [EDP Sciences] [Google Scholar]
  8. S. R. Carpenter, L. H. Gunderson. Coping with collapse: ecological and social dynamics in ecosystem management. BioScience, 51 (2001), 451. [CrossRef] [Google Scholar]
  9. O. Chichigina, D. Valenti, B. Spagnolo. A simple noise model with memory for biological systems. Fluctuation and Noise Letters, 5 (2) (2005), L243–L250. [Google Scholar]
  10. M. Dembo, O. Zeitouni. Large deviations techniques and applications. Jones and Bartlett Publishers, Boston, 1995. [Google Scholar]
  11. C. Folke, T. Hahn, P. Olsson, J. Norberg. Adaptive governance of social-ecological systems. Annual Review of Environment and Resources, 30 (2005), 441–473. [CrossRef] [Google Scholar]
  12. M. I. Freidlin, A. D. Wentzell. Random perturbations of dynamical systems. Springer, New York, 1984. [Google Scholar]
  13. E. González-Olivares, A. Rojas-Palma. Allee effect in Gause type predator-prey models: existence of multiple attractors, limit cycles and separatrix curves. A Brief Review. Math. Model. Nat. Phenom., 8 (2013), 143–164. [CrossRef] [EDP Sciences] [Google Scholar]
  14. C. S. Holling. The functional response of predator to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Canada, 45 (1965), 1–60. [CrossRef] [Google Scholar]
  15. G. N. Mil’shtein, L. B. Ryashko. A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations. J. Appl. Maths. Mechs. 59 (1995), 47–56. [Google Scholar]
  16. S. Petrovskii, A. Morozov, B. -L. Li. Regimes of biological invasion in a predator-prey system with the Allee effect. Bull. Math. Biol., 67 (2005), 637–661. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. L. Ridolfi, P. D’Odorico, F. Laio. Noise-induced phenomena in the environmental sciences. Cambridge University Press, Cambridge, 2011. [Google Scholar]
  18. M. Rietkerk, S. C. Dekker, P. C. de Ruiter, J. van de Koppel. Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305 (2004), 1926–1929. [CrossRef] [PubMed] [Google Scholar]
  19. L. B. Ryashko, I. A. Bashkirtseva. On control of stochastic sensitivity. Automation and Remote Control, 69 (2008), 1171–1180. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. Ryashko, I. Bashkirtseva. Stochastic sensitivity analysis of noise-induced excitement in a prey-predator plankton system. Frontiers in Life Science, 5 (2011) 141–148. [CrossRef] [Google Scholar]
  21. M. Scheffer, S. Carpenter, J. A. Foley, C. Folke, B. Walker. Catastrophic shifts in ecosystems. Nature, 413 (2001), 591–596. [CrossRef] [PubMed] [Google Scholar]
  22. B. Spagnolo, D. Valenti, A. Fiasconaro. Noise in ecosystems: a short review. Math. Biosci Eng. 1 (2004), 185–211. [Google Scholar]
  23. D. Valenti, L. Schimansky-Geier, X. Sailer, B. Spagnolo. Moment equations for a spatially extended system of two competitive species. Eur. Phys. J. B 50 (2006), 199–203. [CrossRef] [EDP Sciences] [Google Scholar]
  24. D. Valenti, G. Augello, B. Spagnolo. Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise. Eur. Phys. J. B, 65 (2008), 443–451. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.