Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 3, 2015
Model Reduction
Page(s) 105 - 123
DOI https://doi.org/10.1051/mmnp/201510309
Published online 22 June 2015
  1. D. Angeli. A tutorial on chemical network dynamics. European Journal of Control, 15 (2009), 398–406. [CrossRef] [MathSciNet] [Google Scholar]
  2. G.P. Beretta. A theorem on Lyapunov stability for dynamical systems and a conjecture on a property of entropy. Journal of Mathematical Physics, 27 (1986), 305–308. [CrossRef] [Google Scholar]
  3. L. Brenig, A. Goriely. Universal canonical forms for the time-continuous dynamical systems. Phys. Rev. A, 40 (1989), 4119–4122. [CrossRef] [PubMed] [Google Scholar]
  4. V. Bykov, A. Gorban, G. Yablonskii, V. Elokhin. Kinetic models of catalytic reactions. In: R. Compton (ed.): Comprehensive Chemical Kinetics, vol. 32. Elsevier, Amsterdam, 1991. [Google Scholar]
  5. V. Chellaboina, S.P. Bhat, W.M. Haddad, D.S. Bernstein. Modeling and analysis of mass-action kinetics – nonnegativity, realizability, reducibility, and semistability. IEEE Control Systems Magazine, 29 (2009), 60–78. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Farkas, Kinetic lumping schemes. Chemical Engineering Science, 54 (1999), 3909–3915. [CrossRef] [Google Scholar]
  7. M. Feinberg, F. Horn. Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces. Archive for Rational Mechanics and Analysis, 66 (1977), 83–97. http://dx.doi.org/10.1007/BF00250853. [CrossRef] [Google Scholar]
  8. M. Feinberg. Chemical reaction network structure and the stability of complex isothermal reactors - I. The deficiency zero and deficiency one theorems. Chemical Engineering Science, 42 (1987), 2229–2268. [CrossRef] [Google Scholar]
  9. A. Figueiredo, I.M. Gleria, T.M. Rocha Filho. Boundedness of solutions and Lyapunov functions in quasi-polynomial systems. Physics Letters A, 268 (2000), 335–341. [CrossRef] [Google Scholar]
  10. I. Gléria, A. Figueiredo, T.R. Filho. On the stability of a class of general non-linear systems. Physics Letters A, 291 (2001), 11–16. [CrossRef] [Google Scholar]
  11. A. Gorban, I. Karlin, A. Zinovyev. Invariant grids for reaction kinetics. Physica A, 33 (2004), 106–154. [CrossRef] [Google Scholar]
  12. A.N. Gorban, P.A. Gorban, G. Judge. Entropy: the Markov ordering approach. Entropy, 12 (2010), 1145-1193. doi:10.3390/e12051145. [CrossRef] [MathSciNet] [Google Scholar]
  13. W.M. Haddad, V. Chellaboina, Q. Hui. Nonnegative and Compartmental Dynamical Systems. Princeton University Press, 2010. [Google Scholar]
  14. A. Halanay, V. Rasvan. Applications of Liapunov methods in stability. Kluwer Academic Publichers, Dordrecht, 1993. [Google Scholar]
  15. K.M. Hangos, J. Bokor, G. Szederkényi. Analysis and control of nonlinear process systems. Springer, London, 2004. [Google Scholar]
  16. K. Hangos, G. Szederkényi. The effect of conservation on the dynamics of chemical reaction networks. In: Proceedings of IFAC Workshop on Thermodynamic Foundations of Mathematical Systems Theory. Lyon, France, July 13-16, 2013, 30–35. [Google Scholar]
  17. V. Hárs, J. Tóth. On the inverse problem of reaction kinetics. In: Qualitative Theory of Differential Equations, ser. Coll. Math. Soc. J. Bolyai, M. Farkas and L. Hatvani, Eds. North-Holland, Amsterdam, vol. 30 (1981), 363–379. [Google Scholar]
  18. B. Hernández-Bermejo, V. Fairén. Lotka-Volterra representation of general nonlinear systems. Math. Biosci., 140 (1997), 1–32. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. B. Hernández-Bermejo, V. Fairén, L. Brenig. Algebraic recasting of nonlinear systems of ODEs into universal formats. J. Phys. A. Math. Gen., 31 (1997), 2415–2430. [CrossRef] [Google Scholar]
  20. B. Hernández-Bermejo, V. Fairén. Nonpolynomial vector fields under the Lotka-Volterra normal form. Physics Letters A, 206 (1995), 31–37. [CrossRef] [Google Scholar]
  21. J.M. van den Hof. System theory and system identification of compartmental systems. Ph.D. dissertation, University of Groningen, 1996. [Google Scholar]
  22. F. Horn, R. Jackson. General mass action kinetics. Archive for Rational Mechanics and Analysis, 47 (1972), 81–116. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Jacquez, C. Simon. Qualitative theory of compartmental systems. SIAM Review, 35 (1993), 43–79. [CrossRef] [MathSciNet] [Google Scholar]
  24. M.D. Johnston, D. Siegel. Linear conjugacy of chemical reaction networks. Journal of Mathematical Chemistry, 49 (2011), 1263–1282. [CrossRef] [Google Scholar]
  25. M.D. Johnston, D. Siegel, G. Szederkényi. Computing weakly reversible linearly conjugate chemical reaction networks with minimal deficiency. Mathematical Biosciences, 241 (2013), 88–98. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. E. Kaszkurewicz, A. Bhaya. Matrix Diagonal Stability in Systems and Computation. Boston, Birkhauser, 2000. [Google Scholar]
  27. V. Rasvan. Dynamical systems with several equilibria and natural Liapunov functions. Archivum Mathematicum, 34 (1998), 207–215. http://dml.cz/dlmcz/107646. [Google Scholar]
  28. N. Samardzija, L.D. Greller, E. Wassermann. Nonlinear chemical kinetic schemes derived from mechanical and electrical dynamical systems, Journal of Chemical Physics, 90 (1989), 2296–2304. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. van der Schaft, S. Rao, B. Jayawardhana. On the mathematical structure of balanced chemical reaction networks governed by mass action kinetics. SIAM Journal on Applied Mathematics, 73 (2013), 953–973. [CrossRef] [Google Scholar]
  30. G. Szederkényi, K.M. Hangos, A. Magyar. On the time-reparametrization of quasi-polynomial systems. Physics Letters A, 334 (2005), 288–294. [CrossRef] [Google Scholar]
  31. B. Ydstie, A. Alonso. Process systems and passivity via the Clausius Plank inequality. Systems and Control Letters, 30 (1997), 253–264. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.