Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 10, Number 3, 2015
Model Reduction
|
|
---|---|---|
Page(s) | 91 - 104 | |
DOI | https://doi.org/10.1051/mmnp/201510308 | |
Published online | 22 June 2015 |
- A. Adrover, F. Creta, M. Giona, M. Valorani, V. Vitacolonna. Natural Tangent Dynamics with Recurrent Biorthonormalization: A Geometric Computational Approach to Dynamical Systems Exhibiting Slow Manifolds and Periodic/Chaotic Limit Sets. Physica D, (2) 213 (2006), 121–146. [CrossRef] [Google Scholar]
- E.M. Alessi, G. Gómez, J.J. Masdemont. Leaving The Moon by Means of Invariant Manifolds of Libration Point Orbits, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 4153–4167. [CrossRef] [Google Scholar]
- L. Barreira, Y.B. Pesin. Lyapunov Exponents and Smooth Ergodic Theory. University Lecture Series 23. American Mathematical Society, Providence, 2002. [Google Scholar]
- M. Belló, G. Gómez, J.J. Masdemont. Invariant Manifolds, Lagrangian Trajectories and Space Mission Design. In: Space Manifold Dynamics. Springer, 2010, 1–96. [Google Scholar]
- M. Branicki, A. M. Macho, S. Wiggins. A Lagrangian Description of Transport Associated with a Front-Eddy Interaction: Application to Data from the North-Western Mediterranean Sea. Physica D, 240 (2011), 282–304. [CrossRef] [Google Scholar]
- E. Chiavazzo, A.N. Gorban, I.V. Karlin. Comparison of Invariant Manifolds for Model Reduction in Chemical Kinetics. Comm. in Comp. Physics, 2 (5) (2007), 964–992. [Google Scholar]
- L. Dieci, E.S. Van Vleck. Lyapunov Spectral Intervals: Theory and Computation. SIAM J. Numerical Analysis, 40 (2) (2002), 516–542. [CrossRef] [Google Scholar]
- E.J. Doedel, V.A. Romanov, R.C. Paffenroth, H.B. Keller, D.J. Dichmann, J. Galán-Vioque, A. Vanderbauwhede. Elemental Periodic Orbits associated with the Libration Points in the Circular Restricted 3-Body Problem. International Journal of Bifurcation and Chaos, 17 (8) (2007), 2625–2677. [CrossRef] [Google Scholar]
- E.J. Doedel, AUTO, ftp://ftp.cs.concordia.ca/pub/doedel/auto. [Google Scholar]
- D.C. Folta, T.A. Pavlak, A.F. Haapala, K.C. Howell, M.A. Woodard. Earth-Moon Libration Point Stationkeeping: Theory, Modeling, and Operations. Acta Astronautica, 94 (1) (2014), 421–433. [CrossRef] [Google Scholar]
- C. Froeschle, E. Lega, R. Gonczi. Fast Lyapunov Indicators: Application to Asteroidal Motion. Celestial Mechanics and Dynamical Astronomy, 67 (1997), 41–62. [CrossRef] [MathSciNet] [Google Scholar]
- C.W. Gear, T.J. Kaper, I.G. Kevrekidis, A. Zagaris. Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes. SIAM J. Appl. Dyn. Syst., 4 (2005), 711–732. [CrossRef] [MathSciNet] [Google Scholar]
- G.H. Golub, C.F. Van Loan. Matrix Computations, 3rd Edition. The Johns Hopkins University Press, Baltimore, 1996. [Google Scholar]
- G. Gómez, J. Llibre, R. Martínez, C. Simó. Station Keeping of Libration Point Orbits. Technical Report ESOC Contract 5648/83/D/JS(SC), 1985. [Google Scholar]
- G. Gómez, J. Masdemont, C. Simó. Study of the Transfer from the Earth to a Halo Orbit Around the Equilibrium Point L1. Celestial Mechanics and Dynamical Astronomy, 56 (1993), 541–562. [Google Scholar]
- G. Haller. Finding Finite-Time Invariant Manifolds in Two-Dimensional Velocity Fields. Chaos, 10 (1) (2000), 99–108. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- B. Hasselblatt, Y.B. Pesin. Partially Hyperbolic Dynamical Systems. In: B. Haselblatt and A. Katok (Eds.), Handbook of Dynamical Systems. vol. 1B. Elsevier, New York, 2005. [Google Scholar]
- K.C. Howell, B. Barden, M. Lo. Application of Dynamical Systems Theory to Trajectory Design for a Libration Point Mission. Journal of Astronautics Science, 45 (2) (1997), 161–178. [Google Scholar]
- T.M. Keeter. Station-Keeping Strategies for Libration Point Orbits: Target Point and Floquet Mode Approaches. Ph.D. Dissertation. Purdue University, 1994. [Google Scholar]
- W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross. Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics. Chaos, 10 (2) (2000), 427-469. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- S.H. Lam, D.A. Goussis. The CSP Method for Simplifying Kinetics. Int. J. Chemical Kinetics, 26 (1994), 461–486. [Google Scholar]
- U. Maas, S.B. Pope. Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space. Combustion and Flame, 88 (1992), 239–264. [Google Scholar]
- K.D. Mease. Multiple Timescales in Nonlinear Flight Mechanics: Diagnosis and Modeling. Applied Mathematics and Computation, 164 (2005), 627–648. [CrossRef] [Google Scholar]
- K.D. Mease, U. Topcu, E. Aykutluğ, M. Maggia. Characterizing Two-Timescale Nonlinear Dynamics Using Finite-Time Lyapunov Exponents and Vectors. (2014). arXiv:0807.0239v3 [math.DS]. [Google Scholar]
- D.S. Naidu, A.J. Calise. Singular Perturbations and Timescales in Guidance and Control of Aerospace Systems: a Survey,. J. Guidance, Control and Dynamics, 24 (6) (2001), 1057–1078. [CrossRef] [Google Scholar]
- R.E. O’Malley. Singular Perturbation Methods for Ordinary Differential Equations. Springer-Verlag, New York, 1991. [Google Scholar]
- M.R. Roussel, S.J. Fraser. Geometry of the Steady-State Approximation: Perturbation and Accelerated Convergence Methods. J. Chem. Phys., 93 (3) (1990), 1072–1081. [CrossRef] [Google Scholar]
- L.A. Segel, M. Slemrod. The Quasi-Steady-State Assumption: a Case Study in Perturbation. SIAM Review, 31 (3) (1989), 446–477. [Google Scholar]
- S. C. Shadden, F. Lekien, J. E. Marsden, Definition and Properties of Lagrangian Coherent Structures from Finite-Time Lyapunov Exponents in Two-Dimensional Aperiodic Flows. Physica D, 212 (2005), 271–304. [NASA ADS] [CrossRef] [Google Scholar]
- C.R. Short, K.C. Howell. Flow Control Segment and Lagrangian Coherent Structure Approaches for Application in Multi-Body Problems. Acta Astronautica 94 (2014), 562–607. [CrossRef] [Google Scholar]
- C. Simó, G. Gómez, J. Llibre, R. Martínez. Station Keeping of a Quasiperiodic Halo Orbit Using Invariant Manifolds. In: Proceedings of the Second International Symposium on Spacecraft Flight Dynamics. Darmstadt, FR Germany, 20-23 October, 1986 (ESA SP-255, Dec. 1986). [Google Scholar]
- V. Szebehely. Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York, 1967. [Google Scholar]
- H. Wan, B.F. Villac. Lunar L1 Earth-Moon Propellant Depot Orbital and Transfer Options Analysis. AAS 13-885, (2013). [Google Scholar]
- H. Wan, personal communication, 2013. [Google Scholar]
- S. Yoden, M. Nomura. Finite-Time Lyapunov Stability Analysis and Its Application to Atmospheric Predictability. J. Atmospheric Sciences, 50 (11) (1993), 1531–1543. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.