Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 3, 2015
Model Reduction
Page(s) 149 - 167
DOI https://doi.org/10.1051/mmnp/201510312
Published online 22 June 2015
  1. M. Aoki. Some approximation methods for estimation and control of large scale systems. IEEE Trans. Automat. Control, AC-23 (1978), 173–182. [Google Scholar]
  2. P. Auger, R. Bravo de la Parra. Methods of aggregation of variables in population dynamics. C. R. Acad. Sci., Ser. III, 323 (2000), 665–674. [CrossRef] [Google Scholar]
  3. F. Büchel, N. Rodriguez, N. Swainston, C. Wrzodek, T. Czauderna, R. Keller, F. Mittag, M. Schubert, M. Glont, M. Golebiewski, M. van Iersel, S. Keating, M. Rall, M. Wybrow, H. Hermjakob, M. Hucka, D. B. Kell, W. Müller, P. Mendes, A. Zell, C. Chaouiya, J. Saez-Rodriguez, F. Schreiber, C. Laibe, A. Dräger, N. Le Novère. Path2Models: Large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol., 7 (2013), 116. [CrossRef] [PubMed] [Google Scholar]
  4. F. W. Chang, F. A. Howes. Nonlinear Singular Perturbation Phenomena: Theory and Application. Applied Mathematical Sciences. vol. 56. Springer, New York, 1984. [Google Scholar]
  5. G.-M. Côme. Radical reaction mechanisms. Mathematical theory. J. Phys. Chem., 81 (1977), 2560–2563. [CrossRef] [Google Scholar]
  6. S. M. Cox, A. J. Roberts. Initial conditions for models of dynamical systems. Physica D, 85 (1995), 126–141. [CrossRef] [Google Scholar]
  7. P. G. Coxson, K. B. Bischoff. Lumping strategy. 1. Introductory techniques and applications of cluster analysis. Ind. Eng. Chem. Res., 26 (1987), 1239–1248. [CrossRef] [Google Scholar]
  8. P. G. Coxson, K. B. Bischoff. Lumping strategy. 2. A system theoretic approach. Ind. Eng. Chem. Res., 26 (1987), 2151–2157. [CrossRef] [Google Scholar]
  9. C. F. Curtiss, J. O. Hirschfelder. Integration of stiff equations. Proc. Natl. Acad. Sci. U.S.A., 38 (1952), 235–243. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. M. J. Davis, R. T. Skodje. Geometric investigation of low-dimensional manifolds in systems approaching equilibrium. J. Chem. Phys., 111 (1999), 859–874. [CrossRef] [Google Scholar]
  11. G. Farkas. Kinetic lumping schemes. Chem. Eng. Sci., 54 (1999), 3909–3915. [Google Scholar]
  12. N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. J. Differential Equations, 31 (1979), 53–98. [Google Scholar]
  13. S. J. Fraser. The steady state and equilibrium approximations: A geometrical picture. J. Chem. Phys., 88 (1988), 4732–4738. [CrossRef] [Google Scholar]
  14. S. J. Fraser. Symbolic methods for invariant manifolds in chemical kinetics. Int. J. Quantum Chem., 106 (2006), 228–243. [CrossRef] [Google Scholar]
  15. J.-M. Ginoux, B. Rossetto, L. O. Chua. Slow invariant manifolds as curvature of the flow of dynamical systems. Int. J. Bifurc. Chaos, 18 (2008), 3409–3430. [CrossRef] [Google Scholar]
  16. A. N. Gorban, I. V. Karlin, V. B. Zmievskii, S. V. Dymova. Reduced description in the reaction kinetics. Physica A, 275 (2000), 361–379. [CrossRef] [Google Scholar]
  17. A. N. Gorban, I. V. Karlin. Method of invariant manifolds and regularization of acoustic spectra. Transport Theory Stat. Phys., 23 (1994), 559–632. [CrossRef] [Google Scholar]
  18. A. N. Gorban, I. V. Karlin. Method of invariant manifold for chemical kinetics. Chem. Eng. Sci., 58 (2003), 4751–4768. [CrossRef] [Google Scholar]
  19. A. N. Gorban, I. V. Karlin, A. Yu. Zinovyev. Constructive methods of invariant manifolds for kinetic problems. Phys. Rep., 396 (2004), 197–403. [CrossRef] [Google Scholar]
  20. A. N. Gorban, I. V. Karlin, A. Yu. Zinovyev. Invariant grids for reaction kinetics. Physica A, 333 (2004), 106–154. [CrossRef] [Google Scholar]
  21. D. A. Goussis, M. Valorani. An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems. J. Comput. Phys., 214 (2006), 316–346. [CrossRef] [Google Scholar]
  22. H. Huang, M. Fairweather, J. F. Griffiths, A. S. Tomlin, R. B. Brad. A systematic lumping approach for the reduction of comprehensive kinetic models. Proc. Combust. Inst., 30 (2005), 1309–1316. [CrossRef] [Google Scholar]
  23. F. G. Heineken, H. M. Tsuchiya, R. Aris. On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Math. Biosci., 1 (1967), 95–113. [CrossRef] [Google Scholar]
  24. Y. Iwasa, V. Andreasen, S. Levin. Aggregation in model ecosystems. I. Perfect aggregation. Ecol. Modelling, 37 (1987), 287–302. [Google Scholar]
  25. J. G. Kemeny, J. L. Snell. Finite Markov Chains. Springer, New York, 1976, pp. 123–140. [Google Scholar]
  26. J. C. W. Kuo, J. Wei. A lumping analysis in monomolecular reaction systems. Analysis of approximately lumpable systems. Ind. Eng. Chem. Fundam., 8 (1969), 124–133. [Google Scholar]
  27. S. H. Lam. Using CSP to understand complex chemical kinetics. Combust. Sci. Technol., 89 (1993), 375–404. [CrossRef] [Google Scholar]
  28. S. H. Lam, D. A. Goussis. The CSP method for simplifying kinetics. Int. J. Chem. Kinet., 26 (1994), 461–486. [CrossRef] [Google Scholar]
  29. G. Li, H. Rabitz. Combined symbolic and numerical approach to constrained nonlinear lumping—with application to an H2/O2 oxidation model. Chem. Eng. Sci., 51 (1996), 4801–4816. [CrossRef] [Google Scholar]
  30. G. Li, H. Rabitz, J. Tóth. A general analysis of exact nonlinear lumping in chemical kinetics. Chem. Eng. Sci., 49 (1994), 343–361. [CrossRef] [Google Scholar]
  31. G. Li, A. S. Tomlin, H. Rabitz, J. Tóth. Determination of approximate lumping schemes by a singular perturbation method. J. Chem. Phys., 99 (1993), 3562–3574. [CrossRef] [Google Scholar]
  32. C. C. Lin, L. A. Segel. Mathematics Applied to Deterministic Problems in the Natural Sciences. Classics in Applied Mathematics, vol. 1 SIAM, Philadelphia, 1988, ch. 9-10. [Google Scholar]
  33. Ch. Lubich, K. Nipp, D. Stoffer. Runge-Kutta solutions of stiff differential equations near stationary points. SIAM J. Numer. Anal., 32 (1995), 1296–1307. [CrossRef] [Google Scholar]
  34. U. Maas, A. S. Tomlin. Time-scale splitting-based mechanism reduction. Cleaner Combustion (F. Battin-Leclerc et al., ed.), Springer, London, 2013, pp. 467–484. [Google Scholar]
  35. A. H. Nguyen, S. J. Fraser. Geometrical picture of reaction in enzyme kinetics. J. Chem. Phys., 91 (1989), 186–193. [CrossRef] [Google Scholar]
  36. B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, F. Thiele. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech., 497 (2003), 335–363. [CrossRef] [Google Scholar]
  37. B. E. Okeke. Lumping Methods for Model Reduction. Master’s thesis, University of Lethbridge, 2013. URL: https://www.uleth.ca/dspace/handle/10133/3558 [Google Scholar]
  38. M. S. Okino, M. L. Mavrovouniotis. Simplification of mathematical models of chemical reaction systems. Chem. Rev., 98 (1998), 391–408. [CrossRef] [PubMed] [Google Scholar]
  39. D. J. M. Park. The hierarchical structure of metabolic networks and the construction of efficient metabolic simulators. J. Theor. Biol., 46 (1974), 31–74. [CrossRef] [PubMed] [Google Scholar]
  40. N. Peters, B. Rogg. Reduced Kinetic Mechanism for Applications in Combustion Systems. 2nd ed., Springer, Berlin, 1993. [Google Scholar]
  41. D. Rempfer. On low-dimensional Galerkin models for fluid flow. Theor. Comput. Fluid Dyn., 14 (2000), 75–88. [CrossRef] [Google Scholar]
  42. A. J. Roberts. Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems. J. Austral. Math. Soc. B, 31 (1989), 48–75. [CrossRef] [Google Scholar]
  43. B. Rossetto, T. Lenzini, S. Ramdani, G. Suchey. Slow-fast autonomous dynamical systems. Int. J. Bifurc. Chaos, 8 (1998), 2135–2145. [CrossRef] [Google Scholar]
  44. M. R. Roussel. A Rigorous Approach to Steady-State Kinetics Applied to Simple Enzyme Mechanisms. Ph.D. thesis, University of Toronto, 1994. [Google Scholar]
  45. M. R. Roussel. Forced-convergence iterative schemes for the approximation of invariant manifolds. J. Math. Chem., 21 (1997), 385–393. [CrossRef] [Google Scholar]
  46. M. R. Roussel. Approximating state-space manifolds which attract solutions of systems of delay-differential equations. J. Chem. Phys., 109 (1998), 8154–8160. [CrossRef] [Google Scholar]
  47. M. R. Roussel, S. J. Fraser. Geometry of the steady-state approximation: Perturbation and accelerated convergence methods. J. Chem. Phys., 93 (1990), 1072–1081. [CrossRef] [Google Scholar]
  48. M. R. Roussel, S. J. Fraser. On the geometry of transient relaxation. J. Chem. Phys., 94 (1991), 7106–7113. [CrossRef] [Google Scholar]
  49. M. R. Roussel, S. J. Fraser. Global analysis of enzyme inhibition kinetics. J. Phys. Chem., 97 (1993), 8316–8327. Errata, ibid. 98 (1994), 5174. [CrossRef] [Google Scholar]
  50. M. R. Roussel, S. J. Fraser. Invariant manifold methods for metabolic model reduction. Chaos, 11 (2001), 196–206. [CrossRef] [PubMed] [Google Scholar]
  51. D. Shear. An analog of the Boltzmann H-theorem (a Liapunov function) for systems of coupled chemical reactions. J. Theor. Biol., 16 (1967), 212–228. [CrossRef] [PubMed] [Google Scholar]
  52. A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi. Lumping and reduction of detailed kinetic schemes: an effective coupling. Ind. Eng. Chem. Res., 53 (2014), 9004–9016. [CrossRef] [Google Scholar]
  53. A. N. Tikhonov, A. B. Vasil’eva, A. G. Sveshnikov. Differential Equations. Springer, Berlin, 1985, pp. 186–213. [Google Scholar]
  54. A. S. Tomlin, T. Turányi, M. J. Pilling. Mathematical tools for the construction, investigation and reduction of combustion mechanisms. Compr. Chem. Kinet., 35 (1997), 293–437. [CrossRef] [Google Scholar]
  55. K. Uldall Kristiansen, M. Brøns, J. Starke. An iterative method for the approximation of fibers in slow-fast systems. SIAM J. Appl. Dyn. Syst., 13 (2014), 861–900. [CrossRef] [Google Scholar]
  56. J. Warnatz, U. Maas, R.W. Dibble. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 2nd ed., Springer, Berlin, 1999. [Google Scholar]
  57. J. Wei, J. C. W. Kuo. A lumping analysis in monomolecular reaction systems. Analysis of the exactly lumpable system. Ind. Eng. Chem. Fundam., 8 (1969), 114–123. [CrossRef] [Google Scholar]
  58. L. E. Whitehouse, A. S. Tomlin, M. J. Pilling. Systematic reduction of complex tropospheric chemical mechanisms, Part I: Sensitivity and time-scale analyses. Atmos. Chem. Phys., 4 (2004), 2025–2056. [CrossRef] [Google Scholar]
  59. A. Zagaris, H. G. Kaper, T. J. Kaper. Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonlinear Sci., 14 (2004), 59–91. [CrossRef] [MathSciNet] [Google Scholar]
  60. A. Zagaris, H. G. Kaper, T. J. Kaper, Fast and slow dynamics for the computational singular perturbation method. Multiscale Model. Simul., 2 (2004), 613–638. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.