Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 3, 2015
Model Reduction
Page(s) 168 - 185
Published online 22 June 2015
  1. V.I. Arnold. Catastrophe Theory, 3rd ed. Berlin: Springer–Verlag, 1992. [Google Scholar]
  2. V. Bykov, I. Goldfarb, V. Gol’dshtein. Singularly Perturbed Vector Fields. Journal of Physics: Conference Series, 55 (2006), 28–44. [Google Scholar]
  3. V. Bykov, V. Gol’dshtein, U. Maas. Simple global reduction technique based on decomposition approach. Combustion Theory and Modelling (CTM), 12 (2) (2008), 389–405. [CrossRef] [Google Scholar]
  4. B.L. Clarke. Stochiometric network analysis. Cell Biophisiscs, 12 (1988), 237–253. [CrossRef] [Google Scholar]
  5. D. Constales, G.S. Yablonsky, G.B. Marin. The C-matrix: augmentation and reduction in the analysis of chemical composition and structure. Chemical Engineering Science, 110 (2014), 164–168. [CrossRef] [Google Scholar]
  6. V. Gol’dshtein, V. Sobolev. Qualitative analysis of singularly perturbed systems of chemical kinetics. In: Singularity Theory and Some Problems of Functional Analysis, S.G. Gindikin, editor. Amer. Math. Soc. ser. 2. vol. 153, 1992, 73–92. [Google Scholar]
  7. A. Khibnik, Yu. Kuznetsov, V. Levitin, E. Nikolaev. Continuation Techniques and Interactive Software for Bifurcation Analysis of ODE and Iterated Maps. Phys. D, 62 (1993), 360–371. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.I. Khibnik, G.S. Yablonsky, V.I. Bykov. 23 Phase Portraits of the Simplest Chemical Oscillator. Russian J. Phys. Chemistry, 51 (1987), 722–723. [Google Scholar]
  9. Y.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, 2004. [Google Scholar]
  10. K.J. Laidler. Chemical Kinetics, 3rd ed. Benjamin–Cummings, 1997. [Google Scholar]
  11. L.D. Landau. On the problem of turbulence. Dokl. Akad. Nauk. SSSR, 44 (31) (1944), 339–342. [Google Scholar]
  12. U. Maas, Habilitation Thesis, Institut fuer Technische Verbrennung, Universitaet Stuttgart, 1993. [Google Scholar]
  13. G.B.Marin, G.S.Yablonsky. Kinetic of Chemical Reactions. Decoding Complexity. J. Wiley – VCH, 2014. [Google Scholar]
  14. H. Poincaré. Les Méthodes Nouvelles de la Méchanique Céleste. Gauthier-Villars, P aris, [1892,1893,1899]. [Google Scholar]
  15. R. Thom. Stabilite structurel et morphogenese. W.A.Bengamin, Reading, Massachusets, USA, 1972. [Google Scholar]
  16. H. Whitney. Tangents to an analytic variety. Annals of Mathematics, 81 (3) (1965), 496–549. [CrossRef] [Google Scholar]
  17. F.A. Williams. Combustion Theory, 2nd ed. Benjamin–Cummings, Menlo Park, California, 1985. [Google Scholar]
  18. G.S. Yablonsky, V.I. Bykov, A.N. Gorban, V.I. Elokhin. Kinetic Models of Catalytic Reactions. Comprehensive Chemical Kinetics ser. vol. 32. Elsevier, Amsterdam – Oxford-New York-Tokyo, 1991. [Google Scholar]
  19. G.S. Yablonsky, M.Z. Lazman. New Correlations for Analysis of Isothermic Critical Phenomena in Heterogeneous Catalysis. React. Kinet. Catal. Letters, 59 (1996), 145–147. [CrossRef] [Google Scholar]
  20. G.S. Yablonsky, I.M.Y. Mareels, M. Lazman. The principle of critical simplification in chemical kinetics. Chemical Engineering Science, 58 (2003), 4833–4842. [CrossRef] [Google Scholar]
  21. E.C. Zeeman. Catastrophe Theory. Scientific American, 234 (1976), 65–83. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.