Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 3, 2015
Model Reduction
Page(s) 16 - 30
Published online 22 June 2015
  1. T.M.K. Coles, H.N Najm, Y.M. Marzouk. CSP simplification of chemical kinetic systems under uncertainty. In: Proc. Third IWMRRF. Corfu, Greece, April 27-29, 2011, 331–334. [Google Scholar]
  2. B.J. Debusschere, Y.M. Marzouk, H.N. Najm, B. Rhoads, D.A. Goussis, and M. Valorani. Computational sinular perturbation with non-parametric tabulation of slow manifolds for time integration of stiff chemical systems. Combust. Theor. Model., 16 (2012), 173–198. [CrossRef] [Google Scholar]
  3. M.J. Davis, R.T. Skodje. Geometric investigation of low-dimensional manifolds in systems approaching equilibrium. J. Chem. Phys., 111 (1999), 859–874. [CrossRef] [Google Scholar]
  4. B.A. Dubrovin, A.T. Fomenko, S.P. Novikov. Modern Geometry – Methods and Applications, vol. 2. Graduate Texts in Mathematics, 104. Springer-Verlag, New York, 1985. [Google Scholar]
  5. N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eq., 31 (1979), 53–98. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.N. Gorban, I.V. Karlin. Method of Invariant Manifold for chemical kinetics. Chem. Eng. Sci., 58 (2003), 4751–4768. [CrossRef] [Google Scholar]
  7. A.N. Gorban, I.V. Karlin. Invariant Manifolds for Physical and Chemical Kinetics. Springer, Berlin, 2004. [Google Scholar]
  8. A.N. Gorban, I.V. Karlin. Hilbert’s 6th Problem: Exact and Approximate Hydrodynamic Manifolds for Kinetic Equations. Bulletin Amer. Math. Soc., 51 (2014), 187–246. [Google Scholar]
  9. A.N. Gorban, I.V. Karlin, A.Yu. Zinovyev. Constructive methods for invariant manifolds for kinetic problems. Phys. Reports, 396 (2004), 197–403. [Google Scholar]
  10. A.N. Gorban, N. Kazantzis, Y.G. Kevrekidis, H.C. Ottinger, and C. Theodoropoulos (eds.). Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena. Springer, Berlin, 2006. [Google Scholar]
  11. D.A. Goussis, S.H. Lam. A study of homogeneous methanol oxidation kinetics using CSP. In: Proceedings of the Twenty-Fourth Symposium (International) on Combustion, The University of Sydney, Sydney, Australia, July 5–10, 1992. The Combustion Institute, Pittsburgh, 1992, 113–120. [Google Scholar]
  12. D. Goussis, U. Maas. Model reduction for combustion chemistry. In: Turbulent Combustion Modeling, Fluid Mechanics and Its Applications, vol. 95. Springer, (2011), 193–220. [Google Scholar]
  13. D. Goussis, H.N. Najm. Model reduction and physical understanding of slowly oscillating processes: the circadian cycle. Multiscale Model. Sim., 5 (2006), 1297–1332. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Goussis, M. Valorani. An efficient iterative algorithm for the approximation of fast and slow dynamics of stiff systems. J. Comp. Phys., 214 (2006), 316–346. [Google Scholar]
  15. S. Gupta. High-Fidelity Simulation and Analysis of Ignition Regimes and Mixing Characteristics for Low Temperature Combustion Engine Applications. Ph.D. Thesis, U. Michigan, 2012. [Google Scholar]
  16. M. Hadjinicolaou, D.A. Goussis. Asymptotic solutions of stiff PDEs with the CSP method: The reaction diffusion equation. SIAM J. Sci. Comput., 20 (1999), 781–810. [CrossRef] [Google Scholar]
  17. H. Hardin, A. Zagaris, K. Krab, H.W. Westerhoff. Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations. Fed. Eur. Biochem. Soc. J., 276 (2009), 5491–5506. [Google Scholar]
  18. C.K.R.T. Jones. Geometric singular perturbation theory. In: Dynamical Systems, Montecatini Terme, L. Arnold, Lecture Notes in Mathematics, 1609. Springer-Verlag, Berlin, 1994, 44–118. [Google Scholar]
  19. H.G. Kaper, T.J. Kaper. Asymptotic analysis of two reduction methods for systems of chemical kinetics. Physica D, 165 (2002), 66–93. [CrossRef] [MathSciNet] [Google Scholar]
  20. P.D. Kourdis, A.G. Palasantza, D.A. Goussis. Algorithmic asymptotic analysis of the NF-kB signaling system. Comp. Math. Appl., 65 (2013), 1516–1534. [CrossRef] [Google Scholar]
  21. P.D. Kourdis, R. Steuer, D.A. Goussis. Physical understanding of complex multiscale biochemical models via algorithmic simplification: Glycolysis in Saccharomyces cerevisiae. Physica D, 239 (2010), 1798–1817. [CrossRef] [Google Scholar]
  22. S.H. Lam. Using CSP to understand complex chemical kinetics. Combust. Sci. Tech., 89 (1993), 375–404. [Google Scholar]
  23. S.H. Lam. Reduced chemistry-diffusion coupling. Combust. Sci. Tech., 179 (2007), 767–786. [CrossRef] [Google Scholar]
  24. S.H. Lam, D.A. Goussis. Understanding complex chemical kinetics with computational singular perturbation. In: Proceedings of the Twenty-Second Symposium (International) on Combustion, The University of Washington, Seattle, Washington, August 14–19, 1988. The Combustion Institute, Pittsburgh, 1988, 931–941. [Google Scholar]
  25. S.H. Lam, D.A. Goussis. Conventional asymptotics and computational singular perturbation theory for simplified kinetics modeling. In: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, M. Smooke (ed.). Lecture Notes in Physics, 384. Springer-Verlag, New York, 1991, Chapter 10. [Google Scholar]
  26. S.H. Lam, D.A. Goussis. The CSP method for simplifying kinetics. Internat. J. Chem. Kin., 26 (1994), 461–486. [Google Scholar]
  27. T. Lovas, E. Mastorakos, D.A. Goussis. Reduction of the RACM scheme using CSP in atmospheric chemistry modeling. J. Geophys. Res. - Atmos., 111 (2006), 1–16. [CrossRef] [Google Scholar]
  28. T.F. Lu, Y.G. Ju, C.K. Law. Complex CSP for chemistry reduction and analysis. Combust. Flame, 126 (2001), 1445–1455. [CrossRef] [Google Scholar]
  29. A. Massias, D. Diamantis, E. Mastorakos, D. Goussis. Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data. Combust. Theor. Model., 3 (1999), 233–257. [CrossRef] [Google Scholar]
  30. M.K. Neophytou, D.A. Goussis, M. van Loon, E. Mastorakos. Reduced chemical mechanisms for atmospheric pollution using computational singular perturbation analysis. Atmos. Environ., 38 (2004), 3661–3673. [CrossRef] [Google Scholar]
  31. P.J. Olver. Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107. Springer-Verlag, New York, 1986. [Google Scholar]
  32. M. Valorani, F. Creta, D.A. Goussis, H.N. Najm, J.C. Lee. Chemical kinetics mechanism simplification via CSP. Combust. Flame, 146 (2006), 29–51. [CrossRef] [Google Scholar]
  33. M. Valorani, D.A. Goussis, F. Creta, H.N. Najm. Higher-order corrections in the approximation of inertial manifolds and the construction of simplified problems with the CSP method. J. Comp. Phys., 209 (2005), 754–786. [CrossRef] [Google Scholar]
  34. M. Valorani, D.A. Goussis. Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock. J. Comput. Phys., 169 (2001), 44–79. [CrossRef] [Google Scholar]
  35. M. Valorani, H.M. Najm, D.A. Goussis. CSP analysis of a transient flame-vortex interaction: time scales and manifolds. Combust. Flame, 134 (2003), 35–53. [CrossRef] [Google Scholar]
  36. A. Zagaris, H.G. Kaper, T.J. Kaper. Analysis of the Computational Singular Perturbation reduction method for chemical kinetics. J. Nonlin. Sci., 14 (2004), 59–91. [Google Scholar]
  37. A. Zagaris, H.G. Kaper, T.J. Kaper. Fast and Slow Dynamics for the Computational Singular Perturbation Method. Multiscale Model. Sim., 2 (2004), 613–638. [Google Scholar]
  38. A. Zagaris, H.G. Kaper, T.J. Kaper. Two perspectives on reduction of ordinary differential equations. Math. Nachr., 278 (2005), 1629–1642. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.