Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 3, 2015
Model Reduction
Page(s) 31 - 47
Published online 22 June 2015
  1. D.V. Anosov. Averaging in systems of ordinary differential equations with rapidly oscillating solutions. Izv. Akad. Nauk SSSR, Ser. Mat., 24 (1960), 721. [MathSciNet] [Google Scholar]
  2. B. Batistić. Exponential Fermi acceleration in general time-dependent billiards. Phys. Rev. E, 90 (2014), 032909. [CrossRef] [Google Scholar]
  3. B. Batistić, M. Robnik. Fermi acceleration in time-dependent billiards: theory of the velocity diffusion in conformally breathing fully chaotic billiards. J. Phys. A: Math. Theor., 44 (2011), 365101. [CrossRef] [Google Scholar]
  4. J. Blocki, Y. Boneh, J.R. Nix, J. Randrup, M. Robel, A.J. Sierk, W.J. Swiatecki. One-body dissipation and the super-viscidity of nuclei. Ann. Phys. (N.Y.), 113 (1978), 330. [CrossRef] [Google Scholar]
  5. M.V.S. Bonanca, M.A.M. de Aguiar. Classical dissipation and asymptotic equilibrium via interaction with chaotic systems. Physica A, 365 (2006), 333. [CrossRef] [Google Scholar]
  6. R. Brown, E. Ott, C. Grebogi. The Goodness of Ergodic Adiabatic Invariants. J. Stat. Phys., 49 (1987), 511. [CrossRef] [Google Scholar]
  7. A. Canergie, I.C. Percival. Regular and chaotic motion in some quartic potentials. J. Phys. A, 17 (1984), 801. [CrossRef] [MathSciNet] [Google Scholar]
  8. R.E. de Carvalho, F.C. de Souza, E.D. Leonel. Fermi acceleration on the annular billiard: a simplified version. J. Phys. A: Math. Theor., 39 (2006), 3561. [CrossRef] [Google Scholar]
  9. R.E. de Carvalho, F.C. de Souza, E.D. Leonel. Fermi acceleration on the annular billiard. Phys. Rev. E, 73 (2006), 066229. [Google Scholar]
  10. E.V. Derishev, V.V. Kocharovsky, Vl.V. Kocharovsky. Cosmic accelerators for ultrahigh-energy particles. Physics - Uspekhi, 50 (2007), 308. [CrossRef] [Google Scholar]
  11. A. Dovbysh. The separatrix of an unstable position of equilibrium of a Hess-Appelrot gyroscope. J. Appl. Math. Mech., 56 (1992), 188. [CrossRef] [MathSciNet] [Google Scholar]
  12. E. Fermi. On the Origin of the Cosmic Radiation. Phys. Rev., 75 (1949), 1169. [NASA ADS] [CrossRef] [Google Scholar]
  13. E. Forest, R.D. Ruth. Fourth-order symplectic integration. Physica D, 43 (1990), 105. [Google Scholar]
  14. V. Gelfreich, V. Rom-Kedar, K. Shah, D. Turaev. Robust exponential acceleration in time-dependent billiards. Phys. Rev. Lett., 106 (2011), 074101. [CrossRef] [PubMed] [Google Scholar]
  15. V. Gelfreich, V. Rom-Kedar, D. Turaev. Fermi acceleration and adiabatic invariants for non-autonomous billiards. Chaos, 22 (2012), 033116. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  16. V. Gelfreich, V. Rom-Kedar, D. Turaev. Oscillating mushrooms: adiabatic theory for a non-ergodic system. J. Phys. A, 47 (2014), 395101. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Hilbert, P. Hänggi, J. Dunkel. Thermodynamic laws in isolated systems. Phys. Rev. E, 90 (2014), 062116. [CrossRef] [Google Scholar]
  18. C. Jarzynski. Energy diffusion in a chaotic adiabatic billiard gas. Phys. Rev. E, 48 (1993), 4340. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Laederich, M. Levi. Invariant curves and time-dependent potentials, Ergod. Th. & Dynam. Sys. 11 (1991), 365. [Google Scholar]
  20. F. Lenz, F.K. Diakonos, P. Schmelcher. Tunable Fermi Acceleration in the Driven Elliptical Billiard. Phys. Rev. Lett., 100 (2008), 014103. [CrossRef] [PubMed] [Google Scholar]
  21. T. Kasuga. On the adiabatic theorem for the Hamiltonian system of differential equations in the classical mechanics, I. Proc. Jpn. Acad., 37 (1961), 366. [CrossRef] [Google Scholar]
  22. E.D. Leonel, L.A. Bunimovich. Suppressing Fermi acceleration in a driven elliptical billiard. Phys. Rev. Lett., 104 (2010), 224101. [CrossRef] [PubMed] [Google Scholar]
  23. E.D. Leonel, D.F.M. Oliveira, A. Loskutov. Fermi acceleration and scaling properties of a time dependent oval billiard. Chaos, 19 (2009), 033142. [CrossRef] [PubMed] [Google Scholar]
  24. M.A. Lieberman, V.A. Godyak. From Fermi acceleration to collisionless discharge heating. IEEE Trans. Plasma Sci., 26 (1998), 955. [CrossRef] [Google Scholar]
  25. P. Lochak, C. Meunier. Multiphase Averaging for Classical Systems. Springer-Verlag, New York, 1988. [Google Scholar]
  26. A. Loskutov, A. Ryabov. Particle dynamics in time-dependent stadium-like billiards. J. Stat. Phys., 108 (2002), 995. [CrossRef] [Google Scholar]
  27. A. Loskutov, A.B. Ryabov, L.G. Akinshin. Mechanism of Fermi acceleration in dispersing billiards with time-dependent boundaries. JETP, 89 (1999), 966. [CrossRef] [Google Scholar]
  28. A. Loskutov, A.B. Ryabov, L.G. Akinshin. Properties of some chaotic billiards with time-dependent boundaries. J. Phys. A: Math. Gen., 33 (2000), 7973. [CrossRef] [Google Scholar]
  29. R.S. MacKay. Nonlinear Dynamics and Chaos: Advances and Perspectives. Springer, 2010, pp. 89–102. [Google Scholar]
  30. B.K. Oksendal, Stochastic Differential Equations: An Introduction with Applications. Springer, 2002. [Google Scholar]
  31. D.F.M. Oliveira, M. Robnik. In flight dissipation as a mechamism to suppress Fermi acceleration. Phys. Rev. E, 83 (2011), 026202. [CrossRef] [Google Scholar]
  32. D.F.M. Oliveira, J. Vollmer, E.D. Leonel. Fermi acceleration and its suppression in a time-dependent Lorentz gas. Physica D, 240 (2011), 389. [CrossRef] [Google Scholar]
  33. E. Ott. Goodness of Ergodic Adiabatic Invariants. Phys. Rev. Lett., 42 (1979), 1628. [CrossRef] [Google Scholar]
  34. T. Pereira, D. Turaev. Exponential energy growth in adiabatically changing Hamiltonian systems. Phys. Rev. E 91 (2015), 010901(R). [CrossRef] [Google Scholar]
  35. O. Peters, W. Klein. Ergodicity Breaking in Geometric Brownian Motion. Phys. Rev. Lett., 110 (2013), 100603. [CrossRef] [PubMed] [Google Scholar]
  36. L.D. Pustyl’nikov. On Ulam’s problem. Theor. Math. Phys., 57 (1983), 1035. [CrossRef] [Google Scholar]
  37. L.D. Pustyl’nikov. Existence of invariant curves for maps close to degenerate maps, and a solution of the Fermi-Ulam problem. Sb. Math., 82 (1995), 231. [CrossRef] [MathSciNet] [Google Scholar]
  38. K. Shah. Energy growth rate in smoothly oscillating billiards. Phys. Rev. E, 83 (2011), 046215. [CrossRef] [Google Scholar]
  39. K. Shah, D. Turaev, V. Rom-Kedar. Exponential energy growth in a Fermi accelerator. Phys. Rev. E, 81 (2010), 056205. [CrossRef] [MathSciNet] [Google Scholar]
  40. D. Turaev, Exponential Fermi acceleration in adiabatically perturbed Hamiltonian systems. In: Proceedings of the 8th European Nonlinear Dynamics Conference (ENOC 2014). 2014. [Google Scholar]
  41. D. Turaev, V. Rom-Kedar. Elliptic islands appearing in near-ergodic flows. Nonlinearity, 11 (1998), 575. [CrossRef] [Google Scholar]
  42. S.M. Ulam, On some statistical properties of dynamical systems. In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 3. University of California Press, Berkeley, 1961, 315–320. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.