Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 3, 2015
Model Reduction
Page(s) 206 - 211
DOI https://doi.org/10.1051/mmnp/201510315
Published online 22 June 2015
  1. E. J. Candés, T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory, (52) (2006), 5406–5425. [Google Scholar]
  2. G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, D. Rosen. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, (3) (1992), 698–713. [Google Scholar]
  3. G. Carpenter, S. Grossberg, D. Rosen. Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance. Neural Networks, (4) (1991), 759–771. [Google Scholar]
  4. K. Cawse, S. B. Damelin, R. McIntyre, M. Mitchley, L. du Plessis, M. Sears. An Investigation of data compression for Hyperspectral core image data. In: Proceedings of the Mathematics in Industry Study Group. South Africa, 2008, 1–25. [Google Scholar]
  5. K. Cawse, M. Sears, A. Robin, S. B. Damelin, K. Wessels, F. van den Bergh, R. Mathieu. Using random matrix theory to determine the number of endmembers in a hyperspectral image. In: Proceedings of WHISPERS 2010. Reykjavik, Iceland, 2010, 45–52. [Google Scholar]
  6. R. Coifman and S. Lafon. Diffusion maps. Journal of Applied and Computational Harmonic Analysis, 21 (1) (2006), 5–30. [Google Scholar]
  7. S. B. Damelin, J. Levesley, D. L. Ragozin, X. Sun. Energies, Group Invariant Kernels and Numerical Integration on Compact Manifolds. Journal of Complexity, (25) (2009), 152-1162. [Google Scholar]
  8. S. B. Damelin, W. Miller. Mathematics and Signal Processing. Cambridge Texts in Applied Mathematics, No. 48, 2012. [Google Scholar]
  9. L. du Plessis, R. Xu, S. B. Damelin, M. Sears, D. C. Wunsch. Reducing dimensionality of hyperspectral data with diffusion maps and clustering with K-means and fuzzy art. Int. J. Syst. Contr. Comm., (3) (2011), 232–251. [Google Scholar]
  10. L. du Plessis, R. Xu, S. B. Damelin, M. Sears, D. C. Wunsch. Reducing dimensionality of hyperspectral data with diffusion maps and clustering with K-means and fuzzy art. In: Proceedings of Interational Joint Conference on Neural Networks. 2009, 32–36. [Google Scholar]
  11. C. Fefferman, S. B. Damelin, W. Glover. BMO Theorems for ɛ distorted diffeomorphisms on ℝD and an application to comparing manifolds of speech and sound. Involve, 5 (2) (2012), 159–172. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Madeira, A. Oliveira. Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics, 1 (1) (2004), 24–45. [CrossRef] [Google Scholar]
  13. M. Mitchley, M. Sears, S. B. Damelin. Target detection I Hyperpectral mineral data using wavelet analysis. In: Proceedings of the 2009 IEEE Geosciences and Remote Sensing Symposium. Cape Town, 2009, 23–45. [Google Scholar]
  14. S. Mulder, D. Wunsch II. Million city traveling salesman problem solution by divide and conquer clustering with adaptive resonance neural networks. Neural Networks, (16) (2003), 827–832. [Google Scholar]
  15. J. de la Porte, B. M. Herbst, W. Hereman, S. J. van der Walt. An Introduction to Diffusion Maps. In: Proceedings of the 19th Symposium of the Pattern Recognition Association of South Africa. 2008. [Google Scholar]
  16. D. Wunsch II. ART Properties of Interest in Engineering Applications. In: Proceedings of International Conference of Neural Networks. Atlanta, 2009. [Google Scholar]
  17. R. Xu, D. Wunsch II. Clustering. IEEE/Wiley, 2008. [Google Scholar]
  18. R. Xu, S. B. Damelin, D. C. Wunsch II. Applications of diffusion maps in gene expression data-based cancer diagnosis analysis. In: Proceedings of the 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society. Lyon, France, 2007, 4613–4616. [Google Scholar]
  19. R. Xu, L. du Plessis, S. B. Damelin, M. Sears, D. C. Wunsch II. Analysis of Hyperspectral Data with Diffusion Maps and Fuzzy ART. In: Proceedings of the 2009 International Joint Conference on Neural Networks. 2009, 2302–2309. [Google Scholar]
  20. R. Xu, D. Wunsch II. Survey of Clustering Algorithms. IEEE Transactions on Neural Networks, 16 (3) (2005), 645–678. [Google Scholar]
  21. R. Xu, S. B. Damelin, B. Nadler, D. C. Wunsch II. Clustering of High-Dimensional Gene Expression Data with Feature Filtering Methods and Diffusion Maps. Bio-Medical Engineering and Informatics, (1) (2008), 245–249. [Google Scholar]
  22. R. Xu, D. C. Wunsch II. BARTMAP: A Viable Structure for Biclustering. Neural Networks, 24 (7) (2011), 709–716. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.