Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 4, 2015
Micro-nanophenomena
Page(s) 1 - 43
DOI https://doi.org/10.1051/mmnp/201510401
Published online 15 July 2015
  1. M. L. Gardel, M. T. Valentine, D. A. Weitz. Microrheology. In: Microscale Diagnostic Techniques, K. Breuer, Ed. New York: Springer, 2005. [Google Scholar]
  2. T. A. Waigh. Microrheology of complex fluids. Reports on Progress in Physics, 68 (2005), 685–742. [Google Scholar]
  3. A. Yao, M. Tassieri, M. Padgett, J. Cooper. Microrheology with optical tweezers. Lab on Chip, 9 (2009), 2568–2575. [CrossRef] [PubMed] [Google Scholar]
  4. P.-H. Wu, C. M. Hale, W.-C. Chen, J. S. H. Lee, Y. Tseng, D. Wirtz. High-throughput ballistic injection nanorheology to measure cell mechanics. Nature Protocols, 7 (2012), 155–170. [CrossRef] [PubMed] [Google Scholar]
  5. S. Dutz, R. Hergt. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int. J. Hyperthermia, 29 (2013), 790–800. [CrossRef] [PubMed] [Google Scholar]
  6. S. Dutz, R. Hergt. Magnetic particle hyperthermia - a promising tumour therapy? Nanotechnology, 25 (2014), Art. no. 252001 (28 pages). [Google Scholar]
  7. E. Amstad, J. Kohlbrecher, E. Müller, T. Schweizer, M. Textor, E. Reimhult. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Letters, 11 (2011), 1664–1670. [CrossRef] [PubMed] [Google Scholar]
  8. R. Deckers, C. Debeissat, P. Y. Fortin, C. T. W. Moonen, F. Couillaud. Arrhenius analysis of the relationship between hyperthermia and Hsp70 promoter activation: A comparison between ex vivo and in vivo data. Int. J. Hyperthermia, 28 (2012), 441–450. [CrossRef] [PubMed] [Google Scholar]
  9. M. B. Bannwarth, S. Ebert, M. Lauck, U. Ziener, S. Tomcin, G. Jakob, K. Münnemann, V. Mailänder, A. Musyanovych, K. Landfester. Tailor-made nanocontainers for combined magnetic-field-induced release and MRI. Macromolecular Bioscience, 14 (2014), 1205–1214. [CrossRef] [PubMed] [Google Scholar]
  10. B. Mehdaoui, A. Meffre, J. Carrey, S. Lachaize, L.-M. Lacroix, M. Gougeon, D. Chaudret, M. Respaud. Optimal size of nanoparticles for magnetic hyperthermia: A combined theoretical and experimental study. Advanced Functional Materials, 21 (2011), 4573–4581. [CrossRef] [Google Scholar]
  11. C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estradé, E. Peiró, Z. Saghi, P. A. Midgley, I. Conde-Leborán, D. Serantes, D. Baldomir. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Scientific Reports, 3 (2013), Art. no. 1652 (8 pages). [CrossRef] [PubMed] [Google Scholar]
  12. R. Di Corato R., A. Espinosa, L. Lartigue, M. Tharaud, S. Chat, T. Pellegrino, C. Ménager, F. Gazeau, C. Wilhelm. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials, 35 (2014), 6400–6411. [CrossRef] [PubMed] [Google Scholar]
  13. Yu. L. Raikher, V. I. Stepanov. Physical aspects of magnetic hyperthermia: Low-frequency ac field absorption in a magnetic colloid. J. Magnetism and Magnetic Materials, 368 (2014), 421–427. [CrossRef] [Google Scholar]
  14. D. Robert, K. Aubertin, J.-C. Bacri, C. Wilhelm. Magnetic nanomanipulations inside living cells compared with passive tracking of nanoprobes to get consensus for intracellular mechanics. Physical Review E, 85 (2012), Art. no. 011905 (9 pages). [CrossRef] [Google Scholar]
  15. E. Roeben, L. Roeder, S. Teusch, M. Effertz, U. K. Deiters, A. M. Schmidt. Magnetic particle nanorheology. Colloid and Polymer Science, 292 (2014), 2013–2023. [CrossRef] [Google Scholar]
  16. A. Ya. Malkin, A. I. Isayev. Rheology: Conceptions, Methods, Applications. Toronto, Chemtech Publishers, 2005. [Google Scholar]
  17. P. Oswald. Rheophysics: The Deformation and Flow of Matter. Cambridge, Cambridge University Press, 2009. [Google Scholar]
  18. L. D. Landau, E. M. Lifshitz. Fluid Mechanics. Oxford, Pergamon Press, 1959. [Google Scholar]
  19. A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 322 (1905), 549–560. [Google Scholar]
  20. H. Haken. Synergetics. Non-equilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology. Berlin, Springer, 1978. 2nd ed. [Google Scholar]
  21. H. Risken. The Fokker-Planck Equation. Springer Series in Synergetics. 1984. Vol. 18. Ed. H. Haken. Berlin, Springer. [Google Scholar]
  22. V. I. Klyatskin. Dynamics of Stochastic Systems. Amsterdam, Elsevier, 2005. [Google Scholar]
  23. Yu. L. Klimontovich. Statistical Theory of Open Systems. Dordrecht, Kluwer, 1995. [Google Scholar]
  24. W. T. Coffey, Yu. P. Kalmykov. The Langevin Equation. World Scientific, Singapore. 2012. 3rd ed. [Google Scholar]
  25. P. Langevin. Sur la théorie du mouvement brownien. Comptes Rendus Acad. Sci., (Paris), 146 (1908), 530–533. [Google Scholar]
  26. C. Wilhelm, F. Gazeau, J.-C. Bacri. Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells. Physical Review E., 67 (2003), Art. no. 061908 (12 pages). [Google Scholar]
  27. Yu. L. Raikher, V. V. Rusakov. Brownian motion in a Jefferys fluid. J. Experimental and Theoretical Physics, 111 (2010), 883–889. [CrossRef] [Google Scholar]
  28. Yu. L. Raikher, V. V. Rusakov, R. Perzynski. Brownian motion in a viscoelastic medium modelled by a Jeffreys fluid. Soft Matter, 9 (2013), 10857–10865. [CrossRef] [Google Scholar]
  29. L. D. Landau, E. M. Lifshitz. Statistical Physics. New York, Pergamon Press, 1980. 3rd ed. Pt.1. [Google Scholar]
  30. J. H. van Zanten, K. P. Rufener. Brownian motion in a single relaxation time Maxwell fluid. Physical Review E, 62 (2000), 5389–5396. [Google Scholar]
  31. F. Cardinaux, L. Cipelletti, F. Scheefold, P. Schurtenberger. Microrheology of giant-micelle solutions. Europhysics Letters, 57 (2002), 738–744. [CrossRef] [Google Scholar]
  32. A. Ochab-Marcinek, R. Holyst. Scale-dependent diffusion of spheres in solutions of flexible and rigid polymers: mean square displacement and autocorrelation function for FCS and DLS measurements. Soft Matter, 7 (2011), 7366–7374. [CrossRef] [Google Scholar]
  33. T. K. Piskorz, A. Ochab-Marcinek. A universal model of restricted diffusion for fluorescence correlation spectroscopy. J. Physical Chemistry B, 118. (2014), 4906–4912. [CrossRef] [Google Scholar]
  34. Yu. L. Raikher, V. V. Rusakov. Dynamic susceptibility of viscoelastic magnetic fluids. J. Experimental and Theoretical Physics, 83 (1996), 988–995. [Google Scholar]
  35. V. S. Volkov. Theory of Brownian motion in a viscoelastic Maxwell fluid. J. Experimental and Theoretical Physics, 71 (1990), 93–98. [Google Scholar]
  36. J.-L. Déjardin. Viscoelastic effects on the dynamic susceptibility of a Brownian particle in an external potential. Physical Review E, 58 (1998), 2808–2817. [CrossRef] [Google Scholar]
  37. V. S. Volkov, A. I. Leonov. Non-Markovian Brownian motion in a viscoelastic fluid. J. Chemical Physics, 104 (1996), 5922–5931. [CrossRef] [Google Scholar]
  38. V. S. Volkov, A. I. Leonov. Rotational Brownian motion of axisymmetric particles in a Maxwell fluid. Physical Review E, 64 (2001), Art. no. 051113 (9 pages). [CrossRef] [Google Scholar]
  39. A. Baura, S. Ray, M. K. Sen, B. C. Bag. Study of non-Markovian dynamics of a charged particle in presence of a magnetic field in a simple way. J. Applied Physics, 113 (2013), Art. no. 124905 (11 pages). [CrossRef] [Google Scholar]
  40. P. G. de Gennes. Scaling Concepts in Polymer Physics. Ithaca, Cornell University Press, 1979. [Google Scholar]
  41. Yu. L. Raikher, V. I. Stepanov. Nonlinear dynamic susceptibilities and field-induced birefringence in magnetic particle assemblies. Advances in Chemical Physics, 129 (2004), 419–588. [Google Scholar]
  42. M. Abramovitz, I. A. Stegun, Eds. Handbook of Mathematical Functions. New York, Dover, 1965. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.