Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 4, 2015
Page(s) 44 - 60
Published online 15 July 2015
  1. S. Alonso and A. S. Mikhailov. Towards active microfluidics: Interface turbulence in thin liquid films with floating molecular machines. Phys. Rev. E, 79:061906, 2009. [CrossRef] [Google Scholar]
  2. A. J. Archer and R. Evans. Dynamical density functional theory and its application to spinodal decomposition. J. Chem. Phys., 121:4246–4254, 2004. [CrossRef] [PubMed] [Google Scholar]
  3. G. Berteloot, A. Hoang, A. Daerr, H. P. Kavehpour, F. Lequeux, and L. Limat. Evaporation of a sessile droplet: Inside the coffee stain. J. Colloid Interface Sci., 370:155–161, 2012. [CrossRef] [PubMed] [Google Scholar]
  4. K. B. Blodgett. Films built by depositing successive monomolecular layers on a solid surface. J. Am. Chem. Soc. 57:1007–1022, 1935. [CrossRef] [Google Scholar]
  5. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley. Wetting and spreading. Rev. Mod. Phys., 81:739–805, 2009. [CrossRef] [Google Scholar]
  6. F. A. M. Bribesh, L. Frastia, and U. Thiele. Decomposition driven interface evolution for layers of binary mixtures: III. two-dimensional steady film states. Phys. Fluids, 24:062109, 2012. [CrossRef] [Google Scholar]
  7. J. W. Cahn. Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys., 42:93–99, 1965. [CrossRef] [Google Scholar]
  8. J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics, 28:258, 1958. [Google Scholar]
  9. T. S. Chan, J. H. Snoeijer, and J. Eggers. Theory of the forced wetting transition. Phys. Fluids, 24:072104, 2012. [CrossRef] [Google Scholar]
  10. X. Chen, M. Hirtz, H. Fuchs, and L. Chi. Fabrication of Gradient Mesostructures by Langmuir-Blodgett Rotating Transfer. Langmuir, 23:2280–2283, 2007. [CrossRef] [PubMed] [Google Scholar]
  11. X. Chen, S. Lenhert, M. Hirtz, N. Lu, H. Fuchs, and L. Chi. Langmuir–blodgett patterning: A bottom–up way to build mesostructures over large areas. Acc. Chem. Res., 40:393–401, 2007. [CrossRef] [PubMed] [Google Scholar]
  12. N. Clarke. Instabilities in thin-film binary mixtures. Eur. Phys. J. E, 14:207–210, 2004. [CrossRef] [EDP Sciences] [Google Scholar]
  13. N. Clarke. Toward a model for pattern formation in ultrathin-film binary mixtures. Macromolecules, 38:6775–6778, 2005. [CrossRef] [Google Scholar]
  14. S. Coveney and N. Clarke. Breakup of a transient wetting layer in polymer blend thin films: Unification with 1d phase equilibria. Phys. Rev. Lett., 111:125702, 2013. [CrossRef] [PubMed] [Google Scholar]
  15. R. V. Craster and O. K. Matar. Dynamics and stability of thin liquid films. Rev. Mod. Phys., 81:1131–1198, 2009. [Google Scholar]
  16. P.-G. de Gennes. Wetting: Statics and dynamics. Rev. Mod. Phys., 57:827–863, 1985. [CrossRef] [Google Scholar]
  17. R. D. Deegan. Pattern formation in drying drops. Phys. Rev. E, 61:475–485, 2000. [CrossRef] [Google Scholar]
  18. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389:827–829, 1997. [CrossRef] [Google Scholar]
  19. G. Delon, M. Fermigier, J. H. Snoeijer, and B. Andreotti. Relaxation of a dewetting contact line. part 2. experiments. J. Fluid Mech., 604:55–75, 2008. [CrossRef] [Google Scholar]
  20. Y. Diao, L. Shaw, Z. Bao, and S. C. B. Mannsfeld. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci., 7:2145–2159, 2014. [CrossRef] [Google Scholar]
  21. F. Doumenc and B. Guerrier. Self-patterning induced by a solutal Marangoni effect in a receding drying meniscus. Europhys. Lett., 103:14001, 2013. [Google Scholar]
  22. P. J. Flory. Principles of Polymer Chemistry. Cornell University Press, Ithaca, 1953. [Google Scholar]
  23. L. Frastia, A. J. Archer, and U. Thiele. Dynamical model for the formation of patterned deposits at receding contact lines. Phys. Rev. Lett., 106:077801, 2011. [CrossRef] [PubMed] [Google Scholar]
  24. L. Frastia, A. J. Archer, and U. Thiele. Modelling the formation of structured deposits at receding contact lines of evaporating solutions and suspensions. Soft Matter, 8:11363–11386, 2012. [CrossRef] [Google Scholar]
  25. O. A. Frolovskaya, A. A. Nepomnyashchy, A. Oron, and A. A. Golovin. Stability of a two-layer binary-fluid system with a diffuse interface. Phys. Fluids, 20:112105, 2008. [CrossRef] [Google Scholar]
  26. M. Galvagno, D. Tseluiko, H. Lopez, and U. Thiele. Continuous and discontinuous dynamic unbinding transitions in drawn film flow. Phys. Rev. Lett., 112:137803, 2014. [CrossRef] [PubMed] [Google Scholar]
  27. P. Glansdorff and I. Prigogine. Thermodynamic theory of structure, stability and fluctuations. Wiley-Interscience, London - New York - Sydney - Toronto, 1971. [Google Scholar]
  28. M. Gleiche, L. F. Chi, and H. Fuchs. Nanoscopic channel lattices with controlled anisotropic wetting. Nature, 403:173–175, 2000. [CrossRef] [PubMed] [Google Scholar]
  29. W. Han and Z. Lin. Learning from ”Coffee Rings”: Ordered structures enabled by controlled evaporative self-assembly. Angew. Chem. Int. Ed., 51:1534–1546, 2012. [CrossRef] [Google Scholar]
  30. G. F. Harrington, J. M. Campbell, and H. K. Christenson. Crystal patterns created by rupture of a thin film. Cryst. Growth Des., 13:5062–5067, 2013. [CrossRef] [Google Scholar]
  31. H. Hu and R. G. Larson. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B, 110:7090–7094, 2006. [CrossRef] [PubMed] [Google Scholar]
  32. S. Jachalski, R. Huth, G. Kitavtsev, D. Peschka, and B. Wagner. Stationary solutions of liquid two-layer thin-film models. SIAM J. Appl. Math., 73:1183–1202, 2013. [CrossRef] [Google Scholar]
  33. S. Jachalski, G. Kitavtsev, and R. Taranets. Weak solutions to lubrication systems describing the evolution of bilayer thin films. Commun. Math. Sci., 12:527–544, 2014. [CrossRef] [Google Scholar]
  34. S. Jachalski, D. Peschka, A. Munch, and B. Wagner. Impact of interfacial slip on the stability of liquid two-layer polymer films. J. Eng. Math., 86:9–29, 2014. [CrossRef] [Google Scholar]
  35. O. E. Jensen and J. B. Grotberg. The spreading of heat or soluble surfactant along a thin liquid film. Phys. Fluids A 5:58–68, 1993. [CrossRef] [Google Scholar]
  36. O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura. Formation of ordered mesoscopic polymer arrays by dewetting. Chaos, 9:308–314, 1999. [CrossRef] [PubMed] [Google Scholar]
  37. M. H. Köpf. On the dynamics of surfactant covered thin liquid films and the formation of stripe patterns in Langmuir- Blodgett transfer. PhD thesis, Westfälische Wilhelms-Universität Münster, 2011. [Google Scholar]
  38. M. H. Köpf, S. V. Gurevich, and R. Friedrich. Controlled nanochannel lattice formation utilizing prepatterned substrates. Phys. Rev. E, 83:016212, 2011. [CrossRef] [Google Scholar]
  39. M. H. Köpf, S. V. Gurevich, R. Friedrich, and L. Chi. Pattern formation in monolayer transfer systems with substratemediated condensation. Langmuir, 26:10444–10447, 2010. [CrossRef] [PubMed] [Google Scholar]
  40. M. H. Köpf, S. V. Gurevich, R. Friedrich, and U. Thiele. Substrate-mediated pattern formation in monolayer transfer: a reduced model. New J. Phys., 14:023016, 2012. [CrossRef] [Google Scholar]
  41. M. H. Köpf and U. Thiele. Emergence of the bifurcation structure of a Langmuir-Blodgett transfer model. Nonlinearity 27:2711–2734, 2014. [CrossRef] [Google Scholar]
  42. E. Küster. Über rhythmische Kristallisation. Kolloid Zeitschrift, 14:307–319, 1914. [CrossRef] [Google Scholar]
  43. R. G. Larson. Transport and deposition patterns in drying sessile droplets. Aiche J., 60:1538–1571, 2014. [Google Scholar]
  44. L. Li, P. Gao, K. C. Schuermann, S. Ostendorp, W. Wang, C. Du, Y. Lei, H. Fuchs, L. De Cola, K. Müllen, and L. Chi. Controllable growth and field-effect property of monolayer to multilayer microstripes of an organic semiconductor. J. Am. Chem. Soc., 132:8807–8809, 2010. [CrossRef] [PubMed] [Google Scholar]
  45. L. Li, P. Gao, W. Wang, K. Müllen, H. Fuchs, and L. Chi. Growth of ultrathin organic semiconductor microstripes with thickness control in the monolayer precision. Angew. Chem. Int. Ed., 52:12530–12535, 2013. [CrossRef] [Google Scholar]
  46. L. Li, M. H. Köpf, S. V. Gurevich, R. Friedrich, and L. Chi. Structure formation by dynamic self-assembly. Small 8:488–503, 2012. [CrossRef] [Google Scholar]
  47. S. Madruga and U. Thiele. Decomposition driven interface evolution for layers of binary mixtures: II. Influence of convective transport on linear stability. Phys. Fluids, 21:062104, 2009. [CrossRef] [Google Scholar]
  48. U. M. B. Marconi and P. Tarazona. Dynamic density functional theory of fluids. J. Chem. Phys., 110:8032–8044, 1999. [CrossRef] [Google Scholar]
  49. A. G. Marin, H. Gelderblom, D. Lohse, and J. H. Snoeijer. Order-to-disorder transition in ring-shaped colloidal stains. Phys. Rev. Lett., 107:085502, 2011. [CrossRef] [PubMed] [Google Scholar]
  50. V. S. Mitlin. Dewetting of solid surface: Analogy with spinodal decomposition. J. Colloid Interface Sci., 156:491–497, 1993. [CrossRef] [Google Scholar]
  51. L. Ó. Náraigh and J. L. Thiffeault. Dynamical effects and phase separation in cooled binary fluid films. Phys. Rev. E 76:035303, 2007. [CrossRef] [Google Scholar]
  52. L. Onsager. Reciprocal relations in irreversible processes. I. Phys. Rev. 37:405–426, 1931. [Google Scholar]
  53. L. Onsager. Reciprocal relations in irreversible processes. II. Phys. Rev., 38:2265–2279, 1931. [CrossRef] [Google Scholar]
  54. A. Oron, S. H. Davis, and S. G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69:931, 1997. [CrossRef] [Google Scholar]
  55. A. Pototsky, M. Bestehorn, D. Merkt, and U. Thiele. Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E, 70:025201(R), 2004. [CrossRef] [Google Scholar]
  56. A. Pototsky, M. Bestehorn, D. Merkt, and U. Thiele. Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys., 122:224711, 2005. [CrossRef] [PubMed] [Google Scholar]
  57. A. Pototsky, U. Thiele, and H. Stark. Stability of liquid films covered by a carpet of self-propelled surfactant particles. Phys. Rev. E, 90:030401(R), 2014. [CrossRef] [Google Scholar]
  58. H. Riegler and K. Spratte. Structural changes in lipid monolayers during the Langmuir-Blodgett transfer due to substrate/monolayer interactions. Thin Solid Films, 210:9–12, 1992. [CrossRef] [Google Scholar]
  59. M. J. Robbins, A. J. Archer, and U. Thiele. Modelling the evaporation of thin films of colloidal suspensions using dynamical density functional theory. J. Phys.: Condens. Matter, 23:415102, 2011. [CrossRef] [Google Scholar]
  60. H. D. Sikes, J. T. Woodward, and D. K. Schwartz. Pattern formation in a substrate-induced phase transition during Langmuir-Blodgett transfer. J. Phys. Chem., 100:9093–9097, 1996. [CrossRef] [Google Scholar]
  61. J. H. Snoeijer and B. Andreotti. Moving contact lines: Scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech., 45:269–292, 2013. [CrossRef] [Google Scholar]
  62. J. H. Snoeijer, B. Andreotti, G. Delon, and M. Fermigier. Relaxation of a dewetting contact line. part 1. a full-scale hydrodynamic calculation. J. Fluid Mech., 579:63–83, 2007. [CrossRef] [Google Scholar]
  63. J. H. Snoeijer, J. Ziegler, B. Andreotti, M. Fermigier, and J. Eggers. Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Phys. Rev. Lett., 100:244502, 2008. [CrossRef] [PubMed] [Google Scholar]
  64. K. Spratte and H. Riegler. Fluorescence microscopy studies of layer substrate interaction during the Langmuir-Blodgett transfer - fractional condensation and local layer modification in lipid monolayers at the 3-phase line. Makromol Chem- M Symp, 46:113–123, 1991. [CrossRef] [Google Scholar]
  65. W. B. H. Tewes. A Theoretical Description of Pattern Formation in Thin Solution Layers. Master’s thesis, Westfälische Wilhelms-Universität Münster, 2013. [Google Scholar]
  66. U. Thiele. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. J. Phys.: Condens. Matter, 22:084019, 2010. [CrossRef] [Google Scholar]
  67. U. Thiele. Note on thin film equations for solutions and suspensions. Eur. Phys. J. Special Topics, 197:213–220, 2011. [CrossRef] [EDP Sciences] [Google Scholar]
  68. U. Thiele. Patterned deposition at moving contact line. Adv. Colloid Interface Sci., 206:399–413, 2014. [CrossRef] [PubMed] [Google Scholar]
  69. U. Thiele, A. J. Archer, and M. Plapp. Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration. Phys. Fluids, 24:102107, 2012. [CrossRef] [Google Scholar]
  70. U. Thiele, S. Madruga, and L. Frastia. Decomposition driven interface evolution for layers of binary mixtures: I. Model derivation and stratified base states. Phys. Fluids, 19:122106, 2007. [CrossRef] [Google Scholar]
  71. U. Thiele, D. V. Todorova, and H. Lopez. Gradient dynamics description for films of mixtures and suspensions: Dewetting triggered by coupled film height and concentration fluctuations. Phys. Rev. Lett., 111:117801, 2013. [CrossRef] [PubMed] [Google Scholar]
  72. U. Thiele, I. Vancea, A. J. Archer, M. J. Robbins, L. Frastia, A. Stannard, E. Pauliac-Vaujour, C. P. Martin, M. O. Blunt, and P. J. Moriarty. Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions. J. Phys.: Condens. Matter, 21:264016, 2009. [CrossRef] [Google Scholar]
  73. K. R. Thomas, N. Clarke, R. Poetes, M. Morariu, and U. Steiner. Wetting induced instabilities in miscible polymer blends. Soft Matter, 6:3517–3523, 2010. [CrossRef] [Google Scholar]
  74. R. Toth, J. Heier, J. N. Tisserant, E. E. Anna, A. Braun, and T. Graule. Self-organised microdots formed by dewetting in a highly volatile liquid. J. Colloid Interface Sci., 378:201–209, 2012. [CrossRef] [PubMed] [Google Scholar]
  75. D. Tseluiko, M. Galvagno, and U. Thiele. Collapsed heteroclinic snaking near a heteroclinic chain in dragged meniscus problems. Eur. Phys. J. E, 37:33, 2014. [CrossRef] [EDP Sciences] [Google Scholar]
  76. M. R. E. Warner, R. V. Craster, and O. K. Matar. Surface patterning via evaporation of ultrathin films containing nanoparticles. J. Colloid Interface Sci., 267:92–110, 2003. [CrossRef] [PubMed] [Google Scholar]
  77. M. Wilczek. Pattern formation in Cahn-Hilliard models for Langmuir-Blodgett transfer. Master’s thesis, Westfälische Wilhelms-Universität Münster, 2012. [Google Scholar]
  78. M. Wilczek and S. V. Gurevich. Locking of periodic patterns in Cahn-Hilliard models for Langmuir-Blodgett transfer. Phys. Rev. E, 90:042926, 2014. [CrossRef] [Google Scholar]
  79. J. Xu, J. Xia, and Z. Lin. Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry. Angew. Chem., 119:1892–1895, 2007. [CrossRef] [Google Scholar]
  80. X. Xu, U. Thiele, and T. Qian. A variational approach to thin film hydrodynamics of binary mixtures. J. Phys.: Condens. Matter, 27:085005, 2015. [CrossRef] [Google Scholar]
  81. H. Yabu and M. Shimomura. Preparation of self-organized mesoscale polymer patterns on a solid substrate: Continuous pattern formation from a receding meniscus. Adv. Funct. Mater., 15:575–581, 2005. [CrossRef] [Google Scholar]
  82. J. Ziegler, J. H. Snoeijer, and J. Eggers. Film transitions of receding contact lines. Eur. Phys. J.-Spec. Top., 166:177–180, 2009. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.