Free Access
Math. Model. Nat. Phenom.
Volume 10, Number 4, 2015
Page(s) 61 - 75
Published online 15 July 2015
  1. V. M. Starov, M. G. Velarde. Surface forces and wetting phenomena. J. Phys.: Condens. Matter, 21 (2009), 464121. [CrossRef] [PubMed] [Google Scholar]
  2. V Starov, M Velarde, C Radke. Wetting and Spreading Dynamics. In ”Surfactanrt Science Series”, v. 138, Taylor&Francis, 2007, 515 pp. [Google Scholar]
  3. N. V. Churaev, V. D. Sobolev, V. M. Starov. Disjoining Pressure of Thin Nonfreezing Interlayers. J Colloid Interface Sci, 247 (2002), 80–83. [CrossRef] [PubMed] [Google Scholar]
  4. N.V. Churaev, V.D. Sobolev. Wetting of low energy surfaces. Adv. Colloid Interf. Sci., 134–135 (2007), 15–23. [CrossRef] [Google Scholar]
  5. I.V. Kuchin, O.K. Matar, R.V. Craster, V.M. Starov. Influence of the disjoining pressure on the equilibrium interfacial profile in transition zone between a thin film and a capillary meniscus. Colloid and Interface Science Communications, 1 (2014), 18-22. [CrossRef] [Google Scholar]
  6. V. Starov. Static contact angle hysteresis on smooth, homogeneous solid substrates. Colloid Polym Sci, 291 (2013), 261–270. [CrossRef] [Google Scholar]
  7. E. Chibowski. Surface free energy of a solid from contact angle hysteresis. Adv. Colloid Interface Sci., 103 (2003), 149–172. [CrossRef] [PubMed] [Google Scholar]
  8. C. W. Extrand, Y. Kumagai. An experimental study of contact angle hysteresis. J. Colloid Interface Sci., 191 (1997), 378–383. [CrossRef] [PubMed] [Google Scholar]
  9. C. W. Extrand. Water contact angle and hysteresis of polyamid surfaces. J. Colloid Interface Sci., 248 (2002), 136–142. [CrossRef] [PubMed] [Google Scholar]
  10. Z.M. Zorin, V.D. Sobolev, N.V. Churaev. Surface Forces in Thin Films and Disperse Systems, Nauka, Moscow, 1972, p. 214. [in Russian]. [Google Scholar]
  11. E.A. Romanov, D.T. Kokorev, N.V. Churaev. Effect of wetting hysteresis on state of gas trapped by liquid in a capillary. Int. J. Heat Mass Transfer, 16 (1973), 549-554. [CrossRef] [Google Scholar]
  12. N. Rangelova, D. Platikanov, Annals Univ. Sofia, Fac.Chim., 71/72, 109 (1976/1977); [Google Scholar]
  13. D. Platikanov, G.P. Yampolskaya, N. Rangelova, Zh. Angarska, L.E. Bobrova, V.N. Izmailova. Free black films of proteins. Thermodynamic parameters. Colloid J., USSR, 43 (1981), 177-180. [Google Scholar]
  14. N. Rangelova, D. Platikanov, Annals Univ. Sofia, Fac. Chim., 78 (1984) 126. [Google Scholar]
  15. N.I. Rangelova, V.N. Izmailova, D.N. Platikanov, G.P. Yampol’skaya, S.D. Tulovskaya. Free black films of proteins: dynamic hysteresis of the contact angle (film-bulk liquid) and the rheological properties of adsorption layers. Colloid J., USSR, 52 (1990), 442-447. [Google Scholar]
  16. D. Platikanov, M. Nedyalkov, V. Petkova. Phospholipid black foam films: dynamic contact angles and gas permeability of DMPC bilayer films. Adv. Colloid Interface Sci., 101-102 (2003), 185-203. [CrossRef] [Google Scholar]
  17. V. Petkova, D. Platikanov, M. Nedyalkov. Phospholipid black foam films: dynamic contact angles and gas permeability of DMPC+DMPG black films. Adv. Colloid Interface Sci., 104 (2003), 37-51. [CrossRef] [PubMed] [Google Scholar]
  18. B.V. Derjaguin, Z.M. Zorin. Investigation of the surface condensation and vapour adsorption close to saturation conditions with micropolarization method. Zh. Fiz. Khim, 29 (1955) 1755-1770. [Google Scholar]
  19. Z.M. Zorin, A.V. Novikova, A.K. Petrov, N V. Churaev. Surface Forces in Thin Films and Stability of Colloids, Nauka, Moscow (1974), p.94 [in Russian]. [Google Scholar]
  20. H. Sagan. Introduction to the Calculus of Variations, Dover reprint, New York, 1992, chapter 7. [Google Scholar]
  21. J. Drelich. The Effect of Drop (Bubble) Size on Contact Angle at Solid Surfaces. J. Adhesion, 63 (1997), 31-51. [CrossRef] [Google Scholar]
  22. R.J. Good, M.N. Koo. The Effect of Drop Size on Contact Angle. J. Colloid Interface Sci., 71 (1979) 283-292. [CrossRef] [Google Scholar]
  23. G.L. Mack. The Determination of Contact Angles from Measurements of the Dimensions of Small Bubbles and Drops. I. The Spheroidal Segment Method for Acute Angles. J Phys Chem., 40 1936, 159-167. [CrossRef] [Google Scholar]
  24. V.S. Veselovsky, V.N. Pertsev. Adhesion of the bubbles to solid surfaces. J. Phys Chem (USSR Academy of Sciences), 8 (1936), 245-259 (in Russian). [Google Scholar]
  25. C.O. Timmons, W.A. Zisman. The Effect of Liquid Structure on Contact Angle Hysteresis. J. Colloid Interface Sci., 22 (1966) 165-171. [CrossRef] [Google Scholar]
  26. A.M. Schwartz. Contact Angle Hysteresis: A Molecular Interpretation. J. Colloid Interface Sci., 75 (1980), 404-408. [CrossRef] [Google Scholar]
  27. K.S. Lee, C.Y. Cheah, R.J. Copleston, V.M. Starov, K. Sefiane. Spreading and evaporation of sessile droplets: Universal behavior in the case of complete wetting. Colloids and Surfaces A: Physicochem. Eng. Aspects, 323 (2008) 63-72. [CrossRef] [Google Scholar]
  28. S. Semenov, A. Trybala, R. Rubio, N. Kovalchuk, V. Starov, M. Velarde. Simultaneous spreading and evaporation: Recent developments. Adv Colloid Interface Sci, 206 (2014), 382–398. [CrossRef] [PubMed] [Google Scholar]
  29. A.N. Frumkin. About phenomena of wetting and adhesion of bubbles. Zh. Fiz. Khim. 12 (1938), 337-345. [Google Scholar]
  30. B.V. Derjaguin. Theory of capillary condensation and other capillary phenomena with taking into account the disjoining pressure of polymolecular liquid films. Zh. Fiz. Khim. 14 (1940) 137-147. [Google Scholar]
  31. Z. M. Zorin, V. P. Romanov, N. V. Churaev. The contact angles of surfactant solution on the quartz surface. Colloid & Polymer Sci. 257 (1979), 968-972 [CrossRef] [Google Scholar]
  32. R.A. Hayes, J. Ralston. Contact angle relaxation on low energy surfaces. Colloids Surfaces, 80 (2-3) (1993), 137-146. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.