Free Access
Issue
Math. Model. Nat. Phenom.
Volume 10, Number 4, 2015
Micro-nanophenomena
Page(s) 83 - 96
DOI https://doi.org/10.1051/mmnp/201510405
Published online 15 July 2015
  1. W.W. Mullins. Solid surface morphologies governed by capillarity. In Metal Surfaces: Structure, Energetics and Kinetics, 17 (1963) (American Society for Metals, Cleveland, OH). [Google Scholar]
  2. D. Maroudas. Dynamics of transgranular voids in metallic thin films under electromigration conditions. Appl. Phys. Lett., 67 (1995), 798. [CrossRef] [Google Scholar]
  3. M. Mahadevan, R.M. Bradley. Simulations and theory of electromigration-induced slit formation in unpassivated single crystal metal lines. Phys. Rev. B, 59 (1999), 11037. [CrossRef] [Google Scholar]
  4. M. Khenner, A. Averbuch, M. Israeli, M. Nathan, E. Glickman. Level set modeling of transient electromigration grooving. Comp. Mater. Sci., 20 (2001), 235. [CrossRef] [Google Scholar]
  5. O. Akyildiz, T.O. Ogurtani. Grain boundary grooving induced by the anisotropic surface drift diffusion driven by the capillary and electromigration forces: Simulations. J. Appl. Phys., 110 (2011), 043521. [CrossRef] [Google Scholar]
  6. S. Stoyanov. Current-induced step bunching at vicinal surfaces during crystal sublimation. Surf. Sci., 370 (1997), 345. [CrossRef] [Google Scholar]
  7. D.J. Liu, J.D. Weeks, D. Kandel. Current-induced step bending instability on vicinal surfaces. Phys. Rev. Lett., 81 (1998), 2743. [CrossRef] [Google Scholar]
  8. M. Dufay, J.-M. Debierre, T. Frisch. Electromigration-induced step meandering on vicinal surfaces: Nonlinear evolution equation. Phys. Rev. B, 75 (2007), 045413. [CrossRef] [Google Scholar]
  9. J. Chang, O. Pierre-Louis, C. Misbah. Birth and morphological evolution of step bunches under electromigration. Phys. Rev. Lett., 96 (2006), 195901. [CrossRef] [PubMed] [Google Scholar]
  10. O. Pierre-Louis. Local electromigration model for crystal surfaces. Phys. Rev. Lett., 96 (2006), 135901. [CrossRef] [PubMed] [Google Scholar]
  11. J. Quah, D. Margetis. Electromigration in macroscopic relaxation of stepped surfaces. Multiscale Model. and Simul., 8 (2010), 667. [CrossRef] [Google Scholar]
  12. V. Usov, C.O. Coileain, I.V. Shvets. Influence of electromigration field on the step bunching process on Si(111). Phys. Rev. B, 82 (2010), 153301. [CrossRef] [Google Scholar]
  13. J. Krug, H.T. Dobbs. Current-induced faceting of crystal surfaces. Phys. Rev. Lett., 73 (1994), 1947. [CrossRef] [PubMed] [Google Scholar]
  14. M. Schimschak, J. Krug. Surface electromigration as a moving boundary value problem. Phys. Rev. Lett., 78 (1997), 278. [CrossRef] [Google Scholar]
  15. F. Barakat, K. Martens, O. Pierre-Louis. Nonlinear wavelength selection in surface faceting under electromigration. Phys. Rev. Lett., 109 (2012), 056101. [CrossRef] [PubMed] [Google Scholar]
  16. D. Maroudas. Surface morphological response of crystalline solids to mechanical stresses and electric fields. Surf. Sci. Reports, 66 (2011), 299. [CrossRef] [Google Scholar]
  17. V. Tomar, M.R. Gungor, D. Maroudas. Current-induced stabilization of surface morphology in stressed solids. Phys. Rev. Lett., 100 (2008), 036106. [CrossRef] [PubMed] [Google Scholar]
  18. R.M. Bradley. Electromigration-induced propagation of nonlinear surface waves. Phys. Rev. E, 65 (2002), 036603. [CrossRef] [Google Scholar]
  19. D. Du, D. Srolovitz. Electrostatic field-induced surface instability. Appl. Phys. Lett., 85 (2004), 4917. [CrossRef] [Google Scholar]
  20. T.O. Ogurtani. The orientation dependent electromigration induced healing on the surface cracks and roughness caused by the uniaxial compressive stresses in single crystal metallic thin films. J. Appl. Phys., 105 (2009), 053503. [CrossRef] [Google Scholar]
  21. M. Khenner. Analysis of a combined influence of substrate wetting and surface electromigration on a thin film stability and dynamical morphologies. C. R. Physique, 14 (2013), 607. [CrossRef] [Google Scholar]
  22. L. Valladares, L.L. Felix, A.B. Dominguez, T. Mitrelias, F. Sfigakis, S.I. Khondaker, C.H.W. Barnes, Y. Majima. Controlled electroplating and electromigration in nickel electrodes for nanogap formation. Nanotechnology, 21 (2010), 445304. [CrossRef] [PubMed] [Google Scholar]
  23. T. Taychatanapat, K.I. Bolotin, F. Kuemmeth, D.C. Ralph. Imaging electromigration during the formation of break junctions. Nano Lett., 7 (2007), 652. [CrossRef] [PubMed] [Google Scholar]
  24. G. Gardinowski, J. Schmeidel, H. Phnur, T. Block, C. Tegenkamp. Switchable nanometer contacts: Ultrathin Ag nanostructures on Si(100). Appl. Phys. Lett., 89 (2006), 063120. [CrossRef] [Google Scholar]
  25. E.G. Colgan, K.P. Rodbell. The role of Cu distribution and Al2Cu precipitation on the electromigration reliability of submicrometer Al(Cu) lines. J. Appl. Phys., 75 (1994), 3423. [CrossRef] [Google Scholar]
  26. J. H. Han, M. C. Shin, S. H. Kang, J. W. Morris Jr. Effects of precipitate distribution on electromigration in Al-Cu thin-film interconnects. Appl. Phys. Lett., 73 (1998), 762. [CrossRef] [Google Scholar]
  27. F. Liu, H. Metiu. Dynamics of phase separation of crystal surfaces. Phys. Rev. B, 48 (1993), 5808. [CrossRef] [Google Scholar]
  28. T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy, P. W. Voorhees. Faceting of a growing crystal surface by surface diffusion. Phys. Rev. E, 67 (2003), 021606. [CrossRef] [Google Scholar]
  29. B.J. Spencer, P.W. Voorhees, J. Tersoff. Morphological instability theory for strained alloy film growth: The effect of compositional stresses and species-dependent surface mobilities on ripple formation during epitaxial film deposition. Phys. Rev. B, 64 (2001), 235318. [CrossRef] [Google Scholar]
  30. R.J. Asaro, V.A. Lubarda. Mechanics of Solids and Materials. Cambridge University Press, New York, 2006 (p. 145). [Google Scholar]
  31. D. Walgraef. Self-organization and nanostructure formation in chemical vapor deposition. Phys. Rev. E, 88 (2013), 042405. [CrossRef] [Google Scholar]
  32. J.G. Verwer, J.M. Sanz-Serna. Convergence of method of lines approximations to partial differential equations. Computing, 33 (1984), 297. [CrossRef] [MathSciNet] [Google Scholar]
  33. W.E. Schiesser. Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs. CRC Press, 1993. [Google Scholar]
  34. E. Hairer, G. Wanner. Stiff differential equations solved by Radau method. J. Comput. Appl. Math., 111 (1999), 93. [CrossRef] [Google Scholar]
  35. P. N. Brown, G. D. Byrne, A. C. Hindmarsh. VODE: A variable coefficient ODE solver. SIAM J. Sci. Stat. Comput., 10 (1989), 1038. [Google Scholar]
  36. J. Zhao, R. Yu, S. Dai, J. Zhu. Kinetical faceting of the low index W surfaces under electrical current. Surf. Sci., 625 (2014), 10. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.