Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 10, Number 4, 2015
Micro-nanophenomena
|
|
---|---|---|
Page(s) | 97 - 110 | |
DOI | https://doi.org/10.1051/mmnp/201510406 | |
Published online | 15 July 2015 |
- M.G. Clerc, E. Tirapegui, M. Trejo. Pattern Formation and Localized Structures in Reaction-Diffusion Systems with Non-Fickian Transport. Phys. Rev. Lett., 97 (2006), 176102. [CrossRef] [PubMed] [Google Scholar]
- M.G. Clerc, E. Tirapegui, M. Trejo. Pattern formation and localized structures in monoatomic layer deposition. Eur. Phys. J., 146 (2007), 407. [Google Scholar]
- D. Walgraef. Self-organization and nanostructure formation in chemical vapor deposition. Phys. Rev. E, 88 (2013), 042405. [Google Scholar]
- P. Cermelli, M. Jabbour. Multispecies epitaxial growth on vicinal surfaces with chemical reactions and diffusion. Proc. R. Soc. A, 461 (2005), 3483. [CrossRef] [Google Scholar]
- P. Cermelli, M. Jabbour. Step bunching during the epitaxial growth of a generic binary-compound thin film. J. Mech. Phys. Solids, 58 (2010), 810. [Google Scholar]
- A. Gocalinska, M. Manganaro, E. Pelucchi, D. D. Vvedensky. Surface organization of homoepitaxial InP films grown by metalorganic vapor-phase epitaxy. Phys. Rev. B, 86 (2012), 165307. [Google Scholar]
- A.L.-S. Chua, E. Pelucchi, A. Rudra, B. Dwir, E. Kapon, A. Zangwill, D.D. Vvedensky. Theory and experiment of step bunching on misoriented GaAs(001) during metalorganic vapor-phase epitaxy. Appl. Phys. Lett., 92 (2008), 0113117. [Google Scholar]
- W.K. Burton, N. Cabrera, F.C. Frank. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. London, Ser. A, 243 (1951), 299. [CrossRef] [Google Scholar]
- A. Pimpinelli, R. Cadoret, E. Gil-Lafon, J. Napierala, A. Trassoudaine. Two-particle surface diffusion-reaction models of vapour-phase epitaxial growth on vicinal surfaces. J. Cryst. Growth, 258 (2003), 1. [Google Scholar]
- A. Pimpinelli, A. Videcoq. Novel mechanism for the onset of morphological instabilities during chemical vapour epitaxial growth. Surf. Sci. Lett., 445 (2003), L23. [CrossRef] [Google Scholar]
- E. Meca, V.B. Shenoy, J. Lowengrub. Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion. Phys. Rev. E, 88 (2013), 052409. [Google Scholar]
- E. Meca, J. Lowengrub, H. Kim, C. Mattevi, V.B. Shenoy. Epitaxial graphene growth and shape dynamics on copper: phase-field modeling and experiments. Nano Lett., 13 (2013), 5692. [CrossRef] [PubMed] [Google Scholar]
- G. Danker, O. Pierre-Louis, K. Kassner, C. Misbah. Peculiar Effects of Anisotropic Diffusion on Dynamics of Vicinal Surfaces. Phys. Rev. Lett., 93 (2004), 185504. [CrossRef] [PubMed] [Google Scholar]
- A.A. Golovin, S.H. Davis, A.A. Nepomnyashchy. A convective Cahn-Hillliard model for the formation of facets and corners in crystal growth. Physica D, 122 (1998), 202. [Google Scholar]
- M. Khenner. A long-wave model for strongly anisotropic growth of a crystal step. Phys. Rev. E, 88 (2013), 022402. [Google Scholar]
- A. Zangwill, D.D. Vvedensky. Regimes of precursor-mediated epitaxial growth. arXiv: 0712.1289 (2007). [Google Scholar]
- I. Bena, C. Misbah, A. Valance. Nonlinear evolution of a terrace edge during step-flow growth. Phys. Rev. B, 47 (1993), 7408. [Google Scholar]
- Y. Saito, M. Uwaha. Anisotropy effect on step morphology described by Kuramoto-Sivashinsky equation. J. Phys. Soc. Jpn., 65 (1996), 3576. [CrossRef] [Google Scholar]
- F. Gillet, O. Pierre-Louis, C. Misbah. Non-linear evolution of step meander during growth of a vicinal surface with no desorption. Eur. Phys. J. B, 18 (2000), 519. [CrossRef] [EDP Sciences] [Google Scholar]
- P. Politi, C. Misbah. When does coarsening occur in the dynamics of one-dimensional fronts ?. Phys. Rev. Lett., 92 (2004), 090601. [CrossRef] [PubMed] [Google Scholar]
- P. Politi, C. Misbah. Nonlinear dynamics in one dimension: A criterion for coarsening and its temporal law. Phys. Rev. E, 73 (2006), 036133. [Google Scholar]
- G. Danker, O. Pierre-Louis, K. Kassner, C. Misbah. Interrupted coarsening of anisotropic step meander. Phys. Rev. E, 68 (2003), 020601(R). [Google Scholar]
- T. Frisch, A. Verga. Effect of Step Stiffness and Diffusion Anisotropy on the Meandering of a Growing Vicinal Surface. Phys. Rev. Lett., 96 (2006), 166104. [CrossRef] [PubMed] [Google Scholar]
- M. Guedda, H. Trojette, S. Peponas, M. Benlahsen. Effect of step stiffness and diffusion anisotropy on dynamics of vicinal surfaces: a competing growth process. Phys. Rev. B, 81 (2010), 195436. [Google Scholar]
- F. Hauber, A. Voigt. Step meandering in epitaxial growth. J. Cryst. Growth, 303 (2007), 80. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.